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1 Introduction

Let Vp be the representation of SO(2,4) containing all the fundamental fields Vi = {X,0,X,0,,0,,X,...}. We
want to understand how to decompose arbitrary tensor products V}‘?" into representations A of SO(2,4) and A of
Sh.
VEr =303 muli(A ) VYO e v (1)
A AFn

The irrep labels of SO(2,4) are A = {A, jr, jr} where A € NU{0} and j.,jr € NU {O}E

We use an oscillator construction to build representations of SO(2,4). The vacuum |0) corresponds to X®™
and the oscillator a}u acting on the vacuum a}u|0> corresponds to the derivative J,, acting on the ith site.

To get highest weight states (HWSs) we take linear combinations ALL = J,’;aj# corresponding to the hook
representation H = [n — 1,1] of S,,. h transforms in Vy.

The HWSs are given with SO(4) indices by

A Al |O) (2)
or alternatively with SU(2)r, x SU(2) g indices
A‘I}-Llaldq n .A‘I}-Lkozkdk|0> (3)
2 The offshell case
2.1 GL(4) offshell operator
We want to organise the operators
A;rllﬂl a A}le#k |0> (4)

into irreps of SO(4) and S,,. A first step is to organise them into irreps of GL(4) and GL(dp).

We can organise the SO(4) indices p; in terms of GL(4) reps K with k boxes and < 4 rows. These reduce to
SO(4) reps in a procedure we will describe later. If V4GL(4) is the fundamental of GL(4) then Schur-Weyl duality

tells us that ok
()T = P v evE (5)
KeP(k,4)

We have summed over partitions K in P(k, 4) with k boxes and < 4 rows, which correspond both to representations
of GL(4) and Si. The corresponding Clebsch-Gordan coefficient is

O Max (6)

INote that for derivatives of scalars, if jz, is integer jr must be too, and similarly if jz, is half-integer. We also have A —n = k > 2j,
and A —n =k > 2jg.




Mg labels the GL(4) state in VG @ and ax the S state in VI‘?’“.

Similarly we can organise the Vy indices h; in terms of GL(dg) reps K’ with k boxes and < dy rows. These
reduce to S, reps in a procedure we will describe later. By Schur-Weyl duality

v = @ v eve (7)
K'eP(k,dmg)
which Clebsch-Gordan coefficient
C?(I' M (8)

/’a’K

Because the A;fu 4, commute, the overall operator transforms in Sym((Vy ® Vz)®*). As discussed in Appendix
Section [C2 this triviality under Sy forces K = K’ and we must sum over the S, states to get

h h
|K7MK5MK ZC;(IMK ax CKIJ\/I’kaK ALUM AILHAIJ > (9)

Since K € P(k,4) it is clear that the rep K organising the hook indices h; can’t have more than 4 rows.
This can further be transformed into a state of the symmetric rep [k] of GL(4dy) with the Clebsch-Gordan

coefficient
K, Mg, M,
[kl Mpg) = D2 D2D Cpgany, 1K Mic, M) (10)
KeP(k,4) Mk M/,

2.2 Decomposing GL(dy) reps K into S, reps

We can further decompose an irrep K of GL(dy) into irreps A of Sy,

vt — @ v e ik (11)
AEP(n)
This gives an overall decomposition
®k
(vir) = B wreviensx (12)

XeP(n),KeP(k)

These reps appear with a multiplicity space V) x which we label with 7 in the Clebsch-Gordan

Chhe (13)

Nax,K,ai,T

For example for K =7 of GL(dy) we have

V) — (V) =@ - 1,1 @ [n - 2,2 14

2.3 Decomposing GL(4) reps K into SO(4) reps

SO(4) is a subgroup of GL(4), so representations K of GL(4) are also representations of SO(4). However under
SO(4) reps K of GL(4) may be reducible. In general we will have a decomposition

vEEW = @VSO(‘”@V KA (15)

We have summed over reps A of SO(4) contained inside K, which occur with a multiplicity space Vi a whose
dimension is in {0,1}. An SO(4) rep is a 2-row Young diagram with row-lengths given by the SU(2)r x SU(2)r
spins

A=T[jr+ jr:|jr — jrl] (16)
SO(4) has the two invariant tensors
77#1#2 and eH1H2H3H4 (17)
In GL(4) language these appear in
o and E (18)



Reducing the k-boxed 4-row GL(4) Young diagram K to A is a matter of taking account of the two invariant
tensors 1 and €. First we remove all possible even partitions 27" from K, corresponding to n contractions (products
of (7 give even partitions). Then project the remaining 4-row Young diagram A’ with 7 to an SO(4) 2-row Young
diagram A; this removes the e tensor. Thus

K = @dlmVKAA P 921, A K) =(N) (19)

2T ,A

We have summed over even partitions 27" which correspond to contractions TE The A’ are then projected to SO(4)
reps A. A complete list of these projections is given in Appendix Section [Al
For example

H :g<1,Bﬂ;B})W<B}) @g(m,m;B})W(Dj)@g@}l;Bﬂ)ﬂ(l)
== ([g) ercen)
=fHemel (20)

which works dimensionally as 20 =10+ 9 + 1.
There is however a complication: sometimes w(A’) projects to a representation A of SO(4) that appears with
a sign that cancels another SO(4) rep, for example

s (WE) = () oo (0P f) r @) s (@08) - 6)
~<([F) e ) e~ 0)

=0 %rm ®H
~g (21)

We don’t want some operators to appear with a negative sign and cancel other operators. Thus we redefine
‘effective’ coefficients

e 7(A’) such that 7(A") = 7(A’) when the sign “makes sense”. Otherwise 7(A’) = 0. Note that 7(A’) is always
either 0 or 1. See Appendix Section [Bl for a full description of 7.

e §(2T, N'; K) is zero for the reps that get cancelled by the 7(A’) which don’t make sense. Note that §(2T,A"; K) <
g(2T, N'; K).

Thus we get
K= @dlmVKA A= P §(2T, N K) ®(A) (22)
2T,A

where everything appears with a positive sign.
So for example

and

which gives

2Since K has < 4 rows, so must anything that is used to build it using the LR rule, e.g. both 27 and A’.



Another example with a much more complicated cancellation

if :W(@)@ﬂ@ﬂ)@ﬂ@ﬂﬂ) @W@aﬂ)@w(aﬂ)@ﬂ@ﬂ)@ﬂ@

—HHe -HHe0e0a0amel

Dimensionally this works 10 = 9 4 1. In the effective description we would have

w<@) —0 and ﬁ(@ﬂ):o (27)

2.4 Going backwards

Suppose on the other hand we are given k and A and we want to work out not only the GL(4) rep K but also the
structure of the tensor K and how it contains the two invariant SO(4) tensors

Nuaps A4 €y g pug (28)

This is extremely important because in the onshell case we want to apply the equations of motion whenever 7
appears.
The procedure is as follows:

e Take A and look up its inverses under the 7 projection #~(A) = {A’}. These inverses are listed in Appendix

Section [B11
e Given a A’ with k¥’ boxes this defines a GL(4) tensor with no contractions 7. A’ may now contain €’s.

e Next we need to add t contractions n to A’ to make it up to a GL(4) Young diagram K with k = k' + 2t
boxes. We do this by GL(4)-tensoring all even partitions 27" with 2¢ boxes and at most 4 rows with A’ to get
K, as long as the effective coupling is non-zero g(27,A’; K) > 1.

For a given k and A this will give a list of GL(4) tensors K

{(Ky=> @ §eTNK)iA=7A)) (29)

K AR 2THk—k/

This list is entirely positive and contains no cancellations. Looking forward to the SU(2)r x SU(2)gr section,
AL ® Ap = {K} as defined here.

2.5 The explicit decomposed operator

We will now explicitly decompose the GL(4) tensor, separating the ¢ ) contractions from the A’ tensor that projects
to A with 7.
To do this we first want to effect for W =V, ® Vg

Sym(We*) - VE¥ @ VEF o V22 @ VEF (30)

See Appendix Section
We get

|K, My, M}, H, A, 7)

= X X X ORI Oy ey Ol ORI O, X0, Al Al |0 (31
My, My My, M, azap
K is a k-box, 4-row rep with GL(4) state Mx and GL(dy) state Mj.. H € P(2t,4) and A’ € P(k',4). 7 runs over
g(H,N'; K) for the GL(4) tensor product H o A' = @, g(H, A} K) K
Now we will butcher this operator for the GL(4) to SO(4) decomposition, paying attention to the interplay
between V4 and Vg. We will



e Replace the V2% tensor Ol ey by nfi#2 - .phze-1kizt This removes the My multiplicity.

e This forces an S% x S; symmetry on the corresponding V® * tensor CZI M},”t This can be seen most simply
if we define Sh1h2 = 77“1“21421“11421”1 and we see that C’I}?M}f?’ is contracted with S};th e S}TLZt—Ith' As

discussed below in Section Z0] this symmetry forces H to have only even rows H = 2T. It also kills the asr
multiplicity to leave just the M., multiplicity.

e 7 now runs over the effective multiplicity §(27T, A’; K) instead of g(27, A’; K). Because K is a 4-row tensor,
2T and A’ and their product can only have 4 rows.

e A and its GL(4) state My, project down to the SO(4) rep A and SO(4) state My with the projection 7. We

will write this Hﬁ NIIV[A/ There is no multiplicity here.

This results in an operator
|K, M}(,QT N A, My, 7)

E: A Mar opzes1-pi hay yhatt1-ohy i T
- C 2T7 A]\/I/\ C ,]\/IA/,aA/CQTM’ C I\/[/, apr Sh1h2 Sth 1h21Ah2t+1u2t+1 ...Ahkuk|0> (32>

Qpr

To get the S, rep A we must further decompose the GL(dy) state My of K along the lines of Section

2.5.1 The S% x S; reduction

A note on the coefficients Cg%h]@, h2t  We can first decompose the tensor product V®2t in the obvious way into

irreps of GL(Vy) ® So;. This is done with coefficients:
hi--hot
CHl,M;f,aH (33)

Now the symmetry conditions on the indices are invariance under S} x S, i.e picking the trivial rep of this group
which comes from (1,1) of S§ and S;. The semi-direct product is a subgroup of Sz;. We can decompose the states
(H,apy) of So; into irreps of the semidirect product subgroup. We need to pick the trivial irrep. of this semi-direct
product. So we have a branching coeflicient

1,1 1,1
Cl(tl,a;SD = 6(H 2T)02(T a)giD (34)
In other words the branching coefficient is zero unless H = 27". So we have a decomposition

There is a counting check on the statement that the rep. of Sz induced from the trivial of S% x S; is the direct sum
of even YD. The order of the semi-direct product group is 2'¢!. The rep. induced from the trivial has dimension
(Qt)' . We have checked, in examples (as reported in the Appendix of note-EOM7.tex) that

tlgt Z dor (36)

Note that the multiplicity of the rep. H of Sy; in the induction of the trivial of the subgroup S% x S; is the same
as the multiplicity of the trivial of the subgroup in the restriction of H to the subgroup. This induction-restriction
duality is Frobenius duality.

The flip Schur-Weyl of this dimension formula is

Dimayyen ] = »  Dimg,2T (37)
: 2Te P(2t)



2.6 SO(4) counting
For a given SO(4) rep A and dimension A = n + k we have using the final operator (B2) and £9)

mult(A,A) = ) &b G2T,N; K) 6(A = 7(A")) Dimg, K (38)
KeP(k4) k' NFE 2TFE—E

Refining to a specific S, rep A using Section we get

mult(A, A0 = Y > > G227, N K) §(A = 7(A) mult(VE* A ® K) (39)
KeP(k,4) k' NFK 2TFkE—FE

We prove these formulae below using SU(2)r x SU(2)r language.

2.7 From SO(4) to SU(2), x SU(2)r

An alternative way of getting the list of GL(4) reps K from k and the SO(4) rep A is to take the inner product of the
two corresponding GL(2)1, x GL(2)g reps. This is more straightforward, but we lose the explicit decomposition of
K into n’s and €’s. This is because the two invariant tensors of SU(2)1, x SU(2) €192 and €142 don’t distinguish
7 from e. The SO(4) tensors are expressed as

M2 ) _ iz Gida . s .
n 0’11#10’12#2 =€ € iy oy by Bigancin

eH1kzpa e araz 0'61(3436043064 Q2

iy oy Figpug Vigpg Vigpy = € € € iy oy Figopcra Qigazis Vigoaciy (40)

It is however much easier to understand the counting from a SU(2);, x SU(2)r perspective.

2.8 SU(2), x SU(2)r offshell operator

For SU(2)r x SU(2)r we are organising
Al .- Al 0) (41)

hiaidy " Phgagdg
We can organise the SU(2)y, indices a; with a GL(2), rep Ap = [t + 2jr,tr] and the SU(2)g indices &; with a
GL(2)g rep Ag = [tr +2jR, tr]. These numbers satisfy 2ty + 2j1, = 2t1, +2j, = k so that Ay and Ag both contain
k boxes.
We proceed for the GL(2);, x GL(2)r tensors as for GL(4)

Qg STRIN hyi---h + +
C/%i,]\/?;,aL CX;,J\?}’;,(ZR C)\,lak,lf,a,“'r Ahlalo’q T Ahkakdk |O> (42)
The A};iai 4, all commute, so the overall operator transforms in the trivial [k] of Sk. Thus we combine the free

St indices of this operator with an S; Clebsch-Gordan

O[AL; ML7 AR) MR) )‘7 ax, {Ta R, 7A-}]
_ AL,an;AR,aR; K, Gk Yoy Gy - Gug hy---hi t +
- C[k],'f CAL,I\/[LAIL CAR,I\/[R,GR C/\,ax,n,am'r Ahlalo’q e Ahkakdk |0> (43)

7 labels the multiplicity of [k] in the Sk tensor product A;, ® Ar ® K, or alternatively the number of times  appears
in the Sy tensor product

AL@Ar =) C(AL,Ag,k) & (44)

It is a rule from [I] that the inner product of two two-row reps gives reps with at most four rows. Thus « has at
most 4 rows.

2.8.1 GL(4) as a GL(2), x GL(2)r product

We can of course convert between GL(2)r, x GL(2)r and GL(4), noticing that 2 x 2 = 4.

Applying this to the tensor products we see that the 4-row & in equation ) is identified with the GL(4) rep
K.

Thus to get K from k and A, we find the corresponding GL(2);, x GL(2)g reps A, and Ar and take their inner
product.



2.9 Offshell counting
We focus on the question:
e Given an SO(2,4) rep (A =n+k,jr,jr) and an S,, rep A, how many HWSs are there?

This is most easily answered from the SU(2)r x SU(2)r point of view. Considering the operator [{3), we just
sum over the {7, K, 7} multiplicity labels

mult(A, jr, jr, A) = Y C(Ar, Ag, K) mult(VS*, A ® K) (45)
Ktk

where 7 runs over the C(Ap, Ar, K) times K appears in A, ® Ap and 7 runs over the mult(ng, A ® K) times
A ® K appears in ng.
More readably we could write this

mult(A, j.,jr, \) = number of times \ appears in [Az @ Ag] (VEF) (46)

Given the relation between the inner product and SO(4) tensors we can also write this in SO(4) language

/ k=K'
mult(A, A, \) Z Z §(A = 7(A")) number of times A appears in Hk_j } (m® 2 )osN| (VS (47)
/ A/Fk/

=33 > S ) §(2T, A K) mult(V2* A @ K) (48)

k' ANFEK 2THk—K' KFE

where 2T are even partitions; we remember that the tensor products o4 and g only allow K with 4 rows; it is also
only an effective tensor product.

2.10 Offshell character expansion and proof of counting

Below we will focus on doing the decomposition () in terms of SO(2,4) characters. If xp(s,z,y) is the character
of Vg then

e(s, )" = Y > mult(A,jr, g, A) dx Xajp.in (5,2, y) (49)

A.jL,jr AFn
The offshell character of Vg, all the descendants of X, is

XF (8, ,y) = x1,00 = Ps (50)

P accounts for all the descendants with derivatives
P= 1 (51)
(1= say)(1 - sz ly) (1 — swy=t)(1 — szly~t)

For a general SO(2,4) irrep
XAjr.in (8, %,9) = Ps2x, (X)xn (Y) (52)
where A = n + k, where k is the number of derivatives for the highest weight, and X = diag(z,2~!) € SU(2).
Since X is in SU(2) we can remove columns of length two when we work out the character, e.g.

o (X) = xm (X) (53)

As we worked out previously in Section 7 of s12diag.dvil and Section 2 of note-EOM.dvil by expanding P"~!
in terms of Vg

X¢ = [Ps]"

=Ps" Y sF > > damult(ViF, A @ A2)C(AL, Ar, Ag)xa, (X)xas(Y)
k=0 A, Ar,AxFk AFn

=Ps" Z skaL xin (Y de
kyjr.jr=0 Abn
Z mult(VI?k,)\@Ag) C (AL = [% + i, % _jL] AR = [% + Jr; % —]'R} aAQ) (54)

Aotk


sl2diag.dvi
note-EOM.dvi

To make life simpler write Ay, = {k,j.} for the SU(2) 2-row Young diagram with k boxes corresponding to the
spin jr, rep.
Ap =[5+, % —j] ={k, i} ~ [24z] (55)

where [2j1] is the single-row Young diagram with 27, boxes, corresponding to the spin j, rep.
This result matches with our goal [{Ed)

mult(A =n+k,jr, jr, A) = > mult(VF* A® Ag) C (AL ={k,jr}, Ar = {k,jr}, As) (56)
Aotk

To get the overall multiplicity of the SO(2,4), ignoring the S,, rep, we sum over the A - n,

mult(A = n+ k,jr,jr) = »_ dxmult(A =n+k,jr, jr,\)

=Y dim, 1 Ay C(Ap = {k,jr}, Ar = {k, jr}, A2) (57)
Aotk

3 Examples for the offshell case

3.1 Scalar: j; =jr=0

Given k and jp = jr = 0 we want to find the GL(4) reps K.
Following the prescription in Section the SO(4) rep is A = [0]. Taking the inverse of the 7 projection from
equation ([AJ) in Appendix Section [AJ] we get

7 ([o]) = {A"} = {[0]. 1)} (58)
Next we add the contractions to get a 4-row K with k boxes.
For A’ = [0], ¥’ = 0 and the number of contractions is ¢ = 4. Thus the reps K come from a GL(4) tensor

product of [0] with even reps with k = 2¢ boxes K = 2T I k.

A’ = [1*] corresponds to a single € tensor. k' = 4 and the number of contractions is t = £2. The reps K come
from a GL(4) tensor product of [1*] with even reps with k& — 4 boxes K = [1*] o (2T F k — 4).

We find exactly the same expansion of GL(4) reps K by taking the inner product of the two corresponding
GL(2) reps:

Ap@hp =55k = [{%}@ﬁ) +E . [%Km‘)’“f)] “Y K (59)

[]<4 means only keep K if K has 4 or fewer rows, i.e. we are implementing the GL(4) tensor product o4. ® is the
Sj inner product.

***This isn’t proved, but true up to k = 12. NB: this observation first brought up by Paul in Mathematica file
for k = 6. Should be able to prove using this paper on the inner product of two-row reps: [II.

This splits into Young diagrams with even and odd row lengths. If we write each diagram in terms of all 4 row
lengths, e.g. [3,1,0,0] for [3,1], then K runs over all Young diagrams of size k with differences between the rows
always even ([3, 1,0, 0] fails this test).

We never need more than one copy of E building the Young diagrams because, e.g. @ appears in (171 (M°%).

***Clarify this.
That the LHS of [B3) gives the correct offshell counting is proved above.
Following Section ZH the operators corresponding to (Ed) are

My ~hyha  of T
CMéT CQT,]VIZ’T Sh1h2 e Sth,tht 0)
4
‘T’,M}( i [1 ]7M[14] H2t+1 Mk yhy---hot hott1-hy T t i i
CMéT7Mf14] M 0[14]11”[14] CQT,Mér 0[14]11”[,14] Shaha " ShaeihaeAhaainer T Al 0) (60)

This covers all independent cases where all indices are contracted and the SO(4) state is trivial. Since K € P(k,4)
this restricts the number of rows in 27"



3.1.1 Explicit examples

For k =2 only A’ = [0] applies and we just get

K=HoH=m (61)
For k = 4 we also get a contribution from A’ = [14] too
S K- eE m(m°2)+E
For k=6
S K =ER e - o) +Jom)
= o + +@ +EE
=D:\:|(D:|°3)+EO|:D—§:‘ (63)

In the final line we have rewritten it as a generic GL(00) tensor product or general symmetric group outer product,
but subtracting the reps with more than 4 rows. This will be useful when we count the onshell operators.

For k =8
ZKBHE@)HEHH{DID( )+E m(m® )] »
[I:I:\:[I:I:D-’-BEFD:D-FBE-F@:D-F%

E

=

- E (64)

For k =10
S K =[] ®E§3}3—{ Dj""’)JrEomjj(Djog)}
= O + P + R e+ @EHJr:”
+——U|+—|||+@ -
=m<m°5>+ﬁom<m°3>—§
JLJ??? o
For kK =12 7 7 7 )

For the offshell case

3~ K = FEFEER © 555 = | (™) e ™)
:mjjeruwuuurM\Hur@m_

+ ) + T+ :HH"F@-’- b
[TIT1111] [TI11] 1 | +@ (66)

+L0 + +HH T +5H

10



3.2 jp—Jr=0

Given k and j, = jr = j we want to find the GL(4) reps K.
Following the prescription in Section B3 the SO(4) rep is A = [2j]. Taking the inverse of the 7 projection from
equation ([ZY) in Appendix Section [AJl we get

”_1([2]]) = {A/} = {[2.]]5 [2.75 17 1]7 7[2.75 27 15 1]5 7[2]’7 25 27 2]} (67)
The first two here make sense since

Lpzpapa At Poogt
E ~ ettt M3M4A[h2u2Ahau3Ah41u4 (68)

Note that the last two appear for j > 1 and appear with a minus sign.
Next we add the contractions to get a 4-row K with k boxes.

For A’ = [2j], k' = 2j and the number of contractions is t = k_22j.

For A’ =[24,1,1], ¥ = 2j + 2 and the number of contractions is t = .
For A’ = —[24,2,1,1], ¥ = 2j 4+ 4 and the number of contractions is t = %.

For A' = —[24,2,2,2], ¥ = 2j 4+ 6 and the number of contractions is t = W

k—2j—2

321 jL=jr=13%

k =1 is trivial.
For k = 3 we get

Y K=A@Ap=H1oHl=geom +H
:Djj+53+§ (69)
For k = 5 we get
Y K=Ar®Ar=HHOHF =0em(m®) +Hom
:m+gﬂj+@z+ﬁﬂ+ﬁﬂ+? (70)

3.22 jo=jp=1

k = 2 is trivial.
For k = 4 we get

ZK:AL@)AR:E:D@EFD =[J°ry +a:‘
=DE+E|33+H}+@3 (71)

For k = 6 we get

oK = Ase An = 5P = o)+ o -

This is the first time a A’ appears with a minus sign; it cancels the appearance of ? in H:‘ orm-
For k = 8 we get

Y K=Aetn=FHD o =mem@™ + Fem@™ -Fem-H

T’ve checked this explicitly, but it’s too tedious to write out.

11



323 jL=jr=3

k = 3 is trivial.
For k =5 we get

ZK:AL@)AR:EP:D@B:ED:D:DOEDqLEiD
=D T A (74)

33 Jjr—Jr=1

Given k and j, = jr + 1 we want to find the GL(4) reps K.
Following the prescription in Section EZ3the SO(4) rep is A = [2jr+1, 1]. Taking the inverse of the 7 projection
from equation ([2l) in Appendix Section [AJl we get

77_1([23'3 +1, 1]) = {A/} = {[QjR +1, 1]) _[QjR +1,2,2, 1]} (75)

Next we add the contractions to get a 4-row K with k boxes.

For A" = [2jr + 1,1], ¥’ = 2jg + 2 and the number of contractions is t =

For A’ = —[2jr + 1,2,2,1], ¥ = 2jr + 6 and the number of contractions is t = % This is only a legal
diagram for jp > %

k—2jr—2

3.3.1 jr=1,jr=0

A=11,1].
k = 2 is trivial.
For k = 4 we get

Y K=A@Ag=FDoH=Heom
=HD0 -+ (76)

For k = 6 we get
S K =Ar@Ar =0 ®H ={ erm(m®) (77)

3.3.2 jo=3jr=

A=12,1].
k = 3 is trivial.
For k =5 we get

1
2

Y K=A @Az = o = oD
=BE+EI+QE+@ (78)

For k = 7 we get a contribution from A’ = [2,2,2,1] which has to appear with a minus sign to gel with the
inner product

57K = AL An =D o <[ oo™ -~ (79)
This is another example of the important of the minus sign.

3.3.3 jL=2jr=1

A=[3,1].
k = 4 is trivial.
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For k = 6 we get

S K =A@ Ar =0 o 0 = FH o
:533+@3 (80)

For k = 8 we get a contribution from A’ = [3,2,2,1] which has to appear with a minus sign to gel with the
inner product

ZKAL@)ARLUI@LUJH:DOE(EQ)@H (81)

34 jL—Jr=2

Following the prescription in Section the SO(4) rep is A = [2jr + 2,2]. Taking the inverse of the 7 projection
from equation ([2l) in Appendix Section [AJl we get

7 ([25r +2,2]) = {A'} = {[2jr + 2,2), —[2jr + 2,2,2]} (82)

3.41 j,=2,jr=0

For k = 4 this is trivial
Z K=mmeH = (83)
For k = 6 we get a non-trivial contribution with a minus sign
DK =FHeHH = _@
=[P+ (84)
35 JjL—Jjr=3

Following the prescription in Section the SO(4) rep is A = [2jr + 3, 3]. Taking the inverse of the 7 projection
from equation [[52) in Appendix Section [Al we get

Tril([2jR + 37 3]) = {A/} = {[2.]R + 35 3]5 7[2.7'13 + 37 35 2]5 [2.]R + 35 37 35 1]5 7[2.7'13 + 35 37 35 3]} (85)

3.5.1 j,=3,jr=0

For k = 6 this is trivial

> K=o o H =HH (86)
For k=8
> K =T o [ = [ oo -
:Bajjjjjtﬁfﬂj (87)
For k =10
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4 The onshell case

4.1 The onshell operator

.I.

We want to remove the equations of motion for individual fields 0#9,X = 0, i.e. when two a;, act on the same

place labelled by 4 and have their SO(4) indices contracted by 7
ke al'Lm alfm (90)
There is no summation over 4. It is clear that we must work in the SO(4) formalism to do this.
For our HWS consider the contraction of two hooks Vg

gz Al AL (91)

Because 7 is symmetric, as a representation of S, this transforms in [7(V3?) = Viat © Vin—2,21- To apply the EoM
we just remove the diagonal Vy, (which corresponds to when 99, are acting on the same site) from 7(V5?) to
get Vp = V|, _2 9;. Thus whenever we contract two hooks, we must project to Vg

nHlMQ AT AT

T phihhgt  _ phihh uips 4t t
hip h2#2_>Bh1h2_Ph1h2S ]Dh1h277 A A

hihy hypa* Th e (92)

There is more detail on this projection in note-EOM. If we feed this projected contraction into the offshell operator

B2) we find
‘K, M, 2T, A, A, My, %>

_ § : 7, M A Mpr ~p2er1 e Ry -choy ~yhoep1ehe 1 1 i 1
- c ~é,_,,,M/’\, HA,MA c 'S Mpr,ans C2T7J\Z[éT CA/,M/’\,,GA/ Bh1h2 T Bh2171h21Ah2t+1#2t+1 o Ahk#k |0> (93)

Qapr

It’s important to note that we’ve had to modify the GL(dg) state to My of 2T to account for the fact that we've
projected out the equation of motion terms. It’s not clear that this really corresponds to a GL(dy) rep anymore.

A GL(dg) description of Sym(VS?") is useful to get one description of the counting but not essential. As
explained in more detail in symvb.tex we have

Sym(VE") = @ Var,p @ Vi, @ Var,a, (94)
2T \s

Var,¢ is a 1-dimensional space corresponding to the even rep. 27" of Sy which transforms as the trivial of the

S% xS subgroup. The existence of the decomposition [ is also useful for replacing Chahae

oT AT which manifestly

: : h1~~~h2t
makes sense. We replace it with Cy. A2y 72T A

the GL(dy) state M}, into S, states :

. The state mor ), runs over dimVar,y,. We can also decompose

Vi) = BV @ vy (95)

A3
with a multiplicity label 74/ x, running over DimV/f‘F. So we will have the corresponding Clebsch C’;\\S’(]K"'TV N
’ AX35TAY A3
We can couple the resulting S, state ay, with the state ay, with an .S,, inner Clebsch Cié;i{f; 2)\?;
the GL(4) cutoff. The subscript 4(27, A’) indicates that S,, reps coming from A’ and S,, reps which were coupled

to 27" are coupled to only the A which are constrained to by the requirement that 27°® A’ does not have more than

constrained by

4 rows.
The formula gets longer, but teh steps are simple :

|)\(S’n,)7 AQ(STL)-, A3(Sn)7 TQT7k2 ) TA'7k27 QT(SQt)'/ A/7 A(SO(4))7 AJA)

_ C)\S-,)\z-,axz-,axi, A MY, SN Myr ~hyehoy H2t+1 ok Ch2t+1"'hk
42T, A" )X axn A37“%377—A/,A3 A, Mp 2T\ A2,a5,,TaT Ny ~ N Mpr,aps A'JLI'V,@A,
...t T oAl
B}nhz B}LQ(,71}L2[,Ah,21,+l}l/21,+1 Ahkuk |O> (96)

In the above ket, we have made explicit what group the rep. label belongs to, so the formula is easier to read.
The label same A’ is used for GL(4), GL(dy), Sk, which is due to Schur-Weyl duality and Sy, symmetry, which is
explained in more detail in section All repeated state-label indices are summed.
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Where do the GL(4) cutoffs appear in the above formula ? A" is a GL(4) label, also shared by other groups,

so it imposes GL(4) cutoffs. Compared to @3 the updated @d has lost the G L(d)-Clebsch CX;WI‘ 1, When we

had GL(dp) states in the off-shell case, it was easy to state how the GL(4) cutoff acts. It is clear we still need a
GL(4) cutoff, but now it has to constrain the S,, tensor product. ( the need for this cutoff can be seen in the k = 6
example ).

Exercise 1 : Can we try and write a formula for C’i" 20205 Which makes a little clearer how the 4d-cutoff
operates. The words describing it above are probably ulough to see how it works in examples such as the k£ = 6
below, but a neat general formula would be good.

Exercise 2 : That should allow us to write a counting formula which is built as a sum of products of manifestly
positive multiplicities, but equal to the alternating sum formulae.

4.2 SO(4) onshell counting

To account for the loss of these terms in the counting we need to proceed carefully.
In the offshell case for the n contractions we had

Sym(Sym(Vg)™) = Mo (V)™ = Y. 2T(Vg™) (97)
2T € P(2t)

By expanding into even Young diagrams with Vp indices we could easily see the GL(4) contraint. Here we have

Sym(V5') (98)

How do we translate into Vi indices so we can see the GL(4) contraints?

Comment : The dual of GL(4) is Sy on W®*. On Wl®2t ® W2®k' it is So; X Spr. As we see in sections and
[C3 we expect the GL(4) cutoff to always be expressed in terms of its duals. A GL(dy) presentation is possible
as follows, but should not be essential.

The answer is to write Vg = 17(V5?) — Vaat and perform the alternating expansion

[t1(V5") = 1] (o (V]
D (CLPIPIVER) o 1t = o] (o (VE)*P)

P

}C}Q) _ Vnat)Ot)

I
=
=

> (CDPAPNVIER) 0 2T (Vi) (99)

p=02TeP(2t—2p)

For example ¢t = 3
T (VE) = o (0 (V)™ — Vas oo (@ (VP)™) + (Vi) oo (Vi) - (Vi)
~ (o + T + ) ) — Vawe o (oo + 1) (V) + BV oo (Vi) ~B(Vi) (100)

So to apply the GL(4) constraint properly here, whenever we tensor 27°(V5>* ") with A/(V*') we must restrict
the result K -k — 2p to 4 rows.
For a given SO(4) rep A and dimension A = n + k the counting inherits the alternating sum (cf. the offshell

formula (BF]))

multgen (A, A) =D (=17 > > G2T, N, K) 6(A = 7(A')) Dimg,_,[1?] Dimg, K
p=0 KeP(k—2p4) K A'Fk 2THk—k —2p
(101)
Refining to a specific S,, rep A (cf. offshell version [BH)) we must expand out

[1P)(Vieh) ® K (V™) (102)

into S, reps. This is done in detail below.
We prove these formulae below using the SU(2);, x SU(2)r character expansion.

15



4.3 Onshell character expansion
For the character of Vp we must now apply the EoM and remove terms like 9,0* X from V. This gives a character
XF = X100 = P(1 —5%)s (103)
For n > 3 the characters are not modified from the off-shell case

Xae.in = Ps™X (X)X (Y) (104)

***What was the story with n = 27
Expanding the character for V2"

Xp = [P(1- 32)5}71

=PA—s)"s"Y 50 > > dy, mult(VEY M @ Ag)C(AL, Ar, A2)xa, (X)xag (Y)
q=0 Ar,Ar,AoFqgAiFn

= Ps" > (~1)Ps™ (Z) sT > da, mult(VF M @ Ag)C(AL, Ag, Ao)xa, (X)xas(Y)  (105)
q=0

p=0 Ap, AR, A2kqAibn

Now make the crucial step of identifying the binomial coefficient with the antisymmetric product of Vj,¢’s that
appears in the expansion of Vg in ([@J)

(7) = am i) (106)

Collect powers of s* where k = 2p + ¢

Ps™> ¥ > " (—1)Pdjansi nater) > > da, mult(Vi7* 2 0 @ Ag)C(AL, Ar, A2)xa, (X)xa(Y) (107)
k=0 p=0 AL, Ar,As-k—2p A\1Fn

Obviously the summand vanishes if £k — 2p < 0. We see that each time we increase p we drop the number of boxes
available for the A;, ® Ag inner product by two and increase the number of anti-symmetrised Vj,,¢ by one.
Next take the tensor product Viautinator) @ Vi,

dpantinater1da, = »_ C([antinat®], Ay, A)dy (108)
AFn
and rearrange
XE=Ps" Y X, (x5 (Y)Y dy
k.jr,jr=0 AFn

SR Y Cllantinat®], A, A) Y mult(ViF*, 4 @ Ay)
p=0 Aibn AoFk—2p
C(AL = {k72p7jL}7AR: {k72p7]R}aA2) (109)

What is really going on here? We take the original V) with EoM and for each p we are removing some of the
A, via anti (VieF) = Vip_pa1,10-1] © Vin—p1s]-

This result matches with our goal [EJ)

n

multgom (A =n +k,jL, jr, A) :Z(—l)p Z C([anti nat®P], Ay, \) Z mult(VSF 72 A1 @ Ag)
p=0 Abn Astk—2p

C(AL = {k_QpajL}aAR: {k_zp’jR}aAQ) (110)

More readably we could write this

multgon(A, jr, jr. A) = number of times A appears in Y _(~1)7 {[1?](V°P) o[AL ® Ag] (V,?k—%)} (111)

nat
p=0
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Each time we increase p we remove a column from each of Ay and Ag.
If we're not interested in the S, multiplicity then

multgon (A, jr, jr) = 3 dx multeon (A, iz, jr, A)
A

:Z Z (—1)? C(Ar ® Ag, K) Dimg,, [17] Dimg, K (112)
p=0 K+k—2p

This matches ().

5 Examples for the onshell case

5.1 Scalar: j;, =jr=0

Compare this section to its offshell equivalent in Section Bl In the decomposition of GL(4) reps K in &9) we
now just substitute (3 (V5?) with V. However we must be aware of the alternating expansion of [¢t](V) when we
enforce the GL(4) tensor products. If we now do the expansion of S,, reps we get

Javoah foin e ti0a ™)

A JE=4
= [Evsh) +E(Vi}4) o [E=4)(vp 7 )
S (-1PRRIVR) 0 [[’“—;ﬂ@: (V2o =) +E<v&4> o (B2 (V) E ) (113)
p=0 >4

In the second line, just as we have done in the explicit offshell examples in Section BTl we have written the GL(4)
tensor product first as an unconstrained GL(co) tensor product followed by the subtraction of reps with more than
4 rows.

In terms of operators the counting in ([[I3) corresponds to the operators

T T
Bhlhz o .Bh2t71h2t |0>

T : T T
Bhlhz o 'Bi2t71h2t6M1H2HJM4A[h1u1 . .Ah4]u4 |0> (114)

This covers all independent cases where all indices are contracted.

Not that for these operators Young diagrams with more than four rows just vanish because there are only 4 u
indices.

In this section we get sloppy with notation and write (7(Vz) instead of [7(V5?) - it should be obvious from
the number of boxes what space we’re symmetrising.

51.1 k=2j5,jr=0

For the offshell case we have
(BeR) i =) (115)

For the onshell case we have
Vi (116)

corresponding to the operator
B} 4,10 (117)

5.1.2 k=4,j5,jr=0

For the offshell case we have

(5 o) i) =m0 (Vi) +E<VH> — o0 (Vi) + 5 (Vi) +E<VH> (118)

17



For the onshell case we have
11 (V) +E<VH> (119)

corresponding to the operators

AT

B} .- Bh . 10) and etrrensia Al Falia

hihy (ha |0) (120)
This correctly gives the number of HWS with these quantum numbers and EoM

(n—1)%2(n—2)(n—3)
6

(121)

5.1.3 k=6,j.,jr=0

Here is where problems originally occured in Paul’s Mathematica file. That problem turned out to be generic.
For the offshell case we have

(9 ) i) = e Vi) + i) o o

<4

m(VHHBaE(vHH@(vHHEI(vH) (122)

For the onshell case we have

[m ) +]J(vin o VB}

<4

=TT (VB>+E(VH)OVB E](VH) (123)

corresponding to the operators

T T T T T
Blilthhgh4Bh5h6|0> and Bh1h26#3#4#5#6A[h3u3..'Ahﬁ]p6|0> (124)

This correctly gives the number of HWS with these quantum numbers and EoM

n(n —1)(n —2)(n — 3)(5n? — 21n + 28)
144

(125)

This example shows the need for the CJ"'('QT_A,)_”, i.e the GL(4) corrected S,, Clebschs. A simple example fo
exercise (1) is to do in it this case.

514 k=8,j,jr =0

From an SO(4) point of view, this can happen in two different ways

i (126)
me (127)

One might think that
€€ (128)

is a separate case, but it is one of ([Z8) when they’re antisymmetrised.
***Clarify this.
For the offshell case we have

HF @ BEF o + 0 T+

+:"'+E33 (129)

The first 5 cases are ([[Z0); the last 2 are ([CZ0).
We write first 5 cases as

o (m) (130)
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The last two cases are roughly

E orm(r) (131)

But we must remember that we only allow GL(4) reps so we must remove extra stuff since

Eom(m)go(m+53)_"'+ H+Eﬂ+?+§ (132)
'—?—? (133)

Thus

Ap®Ar=HTH®HH ZDE(DIHEODI(DI)—

For the onshell case we substitute (17 with Vg.

o v) +Ho o (V)]

<4

mwgw@(vmom(vm

ll(‘ﬁa)%f}](¥ﬁa)gfﬂ(¥ﬁq)%‘éuu o%{j(lﬁq) (134)

This correctly gives the number of HWS with these quantum numbers and EoM

n(n —1)(n —2)(n — 3)(Tn* — 48n3 + 143n? — 222n + 180)

1
1440 (135)

5.1.5 k=10,71,7r =0

For the offshell case
R @ EEHE = + BT + D + D+ +

Jr:_UJr:IIIJr@ (136)

For the onshell case

\
1T
[HEEEN

S

RN T | [ 1]
- (Vi) — (VH)—EJJ (Vi) — - (VH)—?(VH)—?(VH)— (Vi)
1
+ Viat © ( (VH)JrEj(VH)Jr?(VH))

H(%mOO§F(VH) (137)

This correctly gives the number of HWS with these quantum numbers and EoM

n(n —1)(n — 2)(n — 3)(7Tn® — 63n° 4 285n% — 82513 + 1608n2 — 276n + 1280)
14400

(138)
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5.1.6 k=12,j.,jr =0

For the offshell case
AL ®Ap = ® :mm+UJHIIHII+IIHIIIH+@jm

+ FEH + T+ IIHJF%JF H

+ +HH +::H||+ HI+@ (139)

For the onsheel case the correct way of getting this is detailed in a SAGE file.

D:DHZD(VB)+E(VH>OD:D:|(VB)

[
= (Var) —%(VH)

EEEEEEN
(Vig) — - -

+ ‘/nat O%(VH)

+Vnato< lll(VH)—i—"')

Wh)%~>

- H(‘/nat) o <
+Q@moo§%wa (140)

The general formula is below.
It correctly gives dimension

n(n —1)(n — 2)(n — 3)(11n® — 11707 4 702n° — 2960n° + 9219n* — 21083n° + 34588n2 — 36320 + 21000)

302400
(141)
6 An incorrect theorem
One can expand Vp and V;,¢ in terms of V. One might think one could just then expand
£1(ve) +E<VH> o [k —2)(Vp) (142)

in terms of V and then throw away reps with more than 4 rows. This doesn’t work, see A4 notebook 23/3/09.
One needs to ignore the [17](Vat) when throwing away rows, as in ([I3). I don’t understand why.

A 7 projection

In this section Young diagrams are mostly written in terms of their columns lengths, i.e. we write [2¥2, 1%1]7 instead
of [kl + k2, kQ]

We follow the decomposition in Koike and Terada [2].

To decompose a representation K of GL(2n) into representations A of SO(2n) we first remove all possible
combinations of contractions 1 from K to get a Young diagram A’. Then we project it to an n-row representation
A of SO(2n) with 7.

K= 9T, A;K) n(A) =@ dimVia A (143)
A

2T, A’
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We have summed over even partitions 27" which correspond to contractions 7.
The projection m works as follows

e List the / column lengths of A’.

e Fold the columns up at n+i— 1, where i € {1,...1} labels each column. Define k after cancelling folded with
unfolded boxes. For SO(4), i.e. n = 2, this means that if the first column is of length 4, replace it with one
of length ki = 0; if the first column is 3, replace it by k; = 1; if the second column is 4 replace it by ko = 2.

e Define ¢ by t; = k; —i + 1.

e Define T by re-ordering £ so that T; = to(i) for some permutation o € S;andn >Ty > Ty > --- > 1.
e Define i by pu; = T; + i — 1. These are the column lengths of A = w(A').

e It appears with a sign given by the sign of the permutation o.

As an example take A’ = [6,5,3,3] = [4,4,4,2,2,1]7 for n = 2 and project it to A of SO(4).

3 ) 3

N = (144)

Folding up we get k = (0,2,4,2,2,1). Applying the subtraction we get £ = (0,1,2, —1, —2, —4). Rearranging by
size we get T' = (2,1,0,—1, —2, —4) and ¢ = (13). Finally doing the addition A = —[2,2,2,2,2,1]7 where the sign
is the sign of the permutation o = (13).

Diagrams with two rows left the same

r([2te, 19]7) = b2, 14T (145)
for kl, 1{32 Z 0.
For diagrams with three rows
m([3,14]7) = [1’““]
([3a 2, *]T) =
m([3,3,242, 191]7) = [2’“2“ 17
7([3,3,3,%]7) = (146)

for k, ky, ke > 0. * represents any column lengths that give a legitimate Young diagram.

The first line is pretty intuitive. A column of length 3 along with k& columns of length 1 is replaced by a new
Young diagram where we have k + 1 columns of length 1. Equivalently the projected Young diagram has a row of
length [k + 1]. Note the sign in the third line.

For diagrams with four rows the non-zero projections are

7([4]7) = [0]7 =1 dim. rep.
m([4,2,1%7) = —[172)7
([4,3,1%7) = —[2, 1717
([4 3,3, 2k2 1k1]T) :[ k2+3 1k1]
m([4,4,197) = —[1*+2]7
m([4,4,4,2% 1F7) = —[2k=F3 kT (147)
for k,k/’l, kQ Z 0.
A.1 inverses of 7 projection
a1 ([0]7) = {(H)[0]7, (H)[4] "} (148)
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)l
ol

)l
ol

for a,ai,as > 0.

B 7 projection
The non-zero 7 projections are those that “make sense”

ﬁ([ka, 1k1]T) —_ [2k2, 1k1]T
ﬂ'([?), 1k]T) — [1k+1]T
(") =[0"=1

B.1 Inverses of © projection

for a,b > 1,¢ > 0.

C Clebsch-Gordan identities

C.1 V@utnz)

Suppose we have a decomposition of the fundamental V' of GL(M)

ven — @ Vin ® VAGL(M)

A€P(n,M)

with Clebsch-Gordan

p1epin
CA,MA,IIA

22

2a2+3, 1a1]T

3,3,2%2F1 jauT
4,3,3,2%2 19T
4,4,4,2%2 19T

(149)

(150)

(151)

(152)

(153)

(154)

(155)

(156)

(157)

(158)



Suppose we want to decompose this into n = ny + ns

Ve = Om g e — h virevile Pp VeIt
A EP(ny,M) A2€P(n2,M)

The Clebsch-Gordan coefficients are related by

(288 AN ANy ~MAy ,Ma, JSRELITR Py 41
CA MA7a/\ - Z Z Z Z CaA o CMA T CA17MA110’A1 CA27MA21U‘A2

A1, A2 ang ang May,Ma, T€g(A1,A2;0)

CI\A//[I:}T’MAZ is the GL(M) Clebsch-Gordan; CZ,?}T’GAQ is the S,, outer product.

C.2 Sym(W®F)

(159)

(160)

Consider Sym(W®k) where W = V3 ® V5 and V; is the fundamental rep of GL(M) and V2 of GL(M’). A

representative would be
Ahl#l o 'Ahk#k

where the Ay, ,, all commute.
We can consider W as the fundamental rep of GL(M M) so that

®k GL(MM')
Sym(W®%) = Vi

The Clebsch-Gordan for this is
hipa--hgpk
[k], M)
However, decomposing in terms of GL(M) and GL(M') separately we have
V1®k _ @ Vik ® VAGIL(IVI)
AP (k,M)

with Clebsch-Gordan coefficient

CAl I\/IA1 aAl

and v
e @ v even
A2 €P(n,M")
with Clebsch-Gordan coefficient
C#l i

A2 MA2 MAq

Given the S invariance of Sym(W®*) we must have for the Sy, inner product
[k] S Al & A2

which forces A; = Ay and we must sum over the Sj states ap, = ap,. So that
h1u1 hpr k] M, h1 hy 1k
|[K], M) = Cpiifir, => > Cu. Ma, ag, ORrMx, an, Onnag, an,
A1 anq

Counting-wise this is
DimMM/ [k] = Z DimMAlDimM/ A1
A1 €P(k,min(M,M’))
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(162)

(163)

(164)

(165)

(166)

(167)

(168)

(169)

(170)



C.3 Sym(W®2+K)
We want to combine Appendix Sections and First we do the split

’ 2t +k’ 2t+k'
W®2t+k N ‘/1® t+k ®‘/2® +

so that
hipr-hepe _ E E hy--hy 1 g
C[k‘],]\/f[k] - CK,MK,(ZKCK,]\/II,(,(IK
KeP(k,min(M,M")) ax

Then split each tensor into k& = 2t + k&’ according to Appendix Section

Cilli, ™= > D,

KeP(k,min(M,M’)) ax

AK1,0Ko M, MKk, hi---hoy
> X X X GO ORI e, C

Ki,Ks aky,0Ky MK, , Mk, T€g(K1,K2;K)

anysany ~May,Ma, 12t H2t41 Mk
Z Z Z Z CGKJ" CM}@T/ CAl yMagsan CA2,MA2 NN

A1,z angany May,Ma, 7/ €g(A1, A2 K)

Next we use a crucial branching coefficient identity

AK1,0Ky ~OA1;0Ay
E CVaK,‘r CaK,T’ —6K1A15K2A26a1{1a/\16111(211/\257'7"
ak

which can be seen using bra-ket notation. This greatly simplifies our equation to
hipyhppir

C[k] Mg - Z Z Z Z Z Z

KeP(kmin(M,M')) K1,K2 aKx;,0Ky MK, , MKk, M}(I ,M}(Z T€9(K1,K2;K)

CMK17MK2 Chl»»»hgt hoty1---hy
Mg ,7 Ki1,Mk,,ax, ~K2,Mk,,aK,
/ /
CMkl’MK2 C#l"'#zt H2t41 Mk
Mi. T K1, My ok, ~ K2, Mp, ,ak,
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