## Onshell $S O(2,4)$

August 3, 2009

## Contents

1 Introduction ..... 2
2 The offshell case ..... 2
2.1 GL(4) offshell operator ..... 2
2.2 Decomposing $G L\left(d_{H}\right)$ reps $K$ into $S_{n}$ reps ..... 3
2.3 Decomposing $G L(4)$ reps $K$ into $S O(4)$ reps ..... 3
2.4 Going backwards ..... 5
2.5 The explicit decomposed operator ..... 5
2.5.1 The $S_{o}^{t} \ltimes S_{+}$reduction ..... 6
2.6 $S O(4)$ counting ..... 7
2.7 From $S O(4)$ to $S U(2)_{I} \times S U(2)_{B}$ ..... 7
$2.8 \quad S U(2)_{L} \times S U(2)_{R}$ offshell operator ..... 7
2.8.1 $G L(4)$ as a $G L(2)_{L} \times G L(2)_{B}$ product ..... 7
2.9 Offshell counting ..... 8
2.10 Offshell character expansion and proof of counting ..... 8
3 Examples for the offshell case ..... 9
3.1 Scalar: $i_{L}=j_{R}=0$ ..... 9
3.1.1 Explicit examples ..... 10
$3.2 \quad j_{L}-j_{B}=0$ ..... 11
3.2.1 $\quad i_{L}=j_{B}=\frac{1}{0}$ ..... 11
3.2.2 $\quad i_{L}=j_{B}=1$ ..... 11
3.2.3 $\quad i_{L}=j_{B}=\sqrt[3]{2}$ ..... 12
$3.3 \quad i_{L}-j_{B}=1$ ..... 12
3.3.1 $\quad j_{L}=1 . j_{B}=0$ ..... 12
3.3.2 $\quad i_{L}=\frac{3}{0}, j_{R}=\frac{1}{0}$ ..... 12
3.3.3 $\quad j_{L}=2 . i_{B}=1$ ..... 12
$3.4 \quad j_{L}-j_{B}=2$ ..... 13
3.4.1 $j_{L}=2 . j_{R}=0$ ..... 13
$3.5 \quad j_{L}-j_{B}=3$ ..... 13
3.5.1 $\quad j_{L}=3 . j_{R}=0$ ..... 13
4 The onshell case ..... 14
4.1 The onshell operator ..... 14
4.2 $S O(4)$ onshell counting ..... 15
4.3 Onshell character expansion ..... 16
5 Examples for the onshell case ..... 17
5.1 Scalar: $i_{L}=j_{B}=0$ ..... 17
5.1.1 $\quad k=2 . i_{L} . j_{B}=0$ ..... 17
5.1.2 $k=4 . i_{L} . j_{B}=0$ ..... 17
5.1.3 $k=6 . i_{L} . i_{B}=0$ ..... 18
5.1.4 $k=8 . i_{L} . j_{B}=0$ ..... 18
5.1.5 $\quad k=10, i_{L} . j_{B}=0$ ..... 19
5.1.6 $k=12 . j_{L} . j_{B}=0$ ..... 20
6 An incorrect theorem ..... 20
A $\pi$ projection ..... 20
A. 1 inverses of $\pi$ proiection ..... 21
B $\tilde{\pi}$ projection ..... 22
B. 1 Inverses of $\tilde{\pi}$ projection ..... 22
C Clebsch-Gordan identities ..... 22
C. $1 V^{\otimes\left(n_{1}+n_{2}\right)}$ ..... 22
C. $2 \operatorname{Svm}\left(W^{\otimes k}\right)$ ..... 23
C. $3 \operatorname{Svm}\left(W^{\otimes 2 t+k^{\prime}}\right)$ ..... 24

## 1 Introduction

Let $V_{F}$ be the representation of $S O(2,4)$ containing all the fundamental fields $V_{F}=\left\{X, \partial_{\mu} X, \partial_{\mu_{1}} \partial_{\mu_{2}} X, \ldots\right\}$. We want to understand how to decompose arbitrary tensor products $V_{F}^{\otimes n}$ into representations $\Lambda$ of $S O(2,4)$ and $\lambda$ of $S_{n}$.

$$
\begin{equation*}
V_{F}^{\otimes n}=\sum_{\Lambda} \sum_{\lambda \vdash n} \operatorname{mult}(\Lambda, \lambda) V_{\Lambda}^{S O(2,4)} \otimes V_{\lambda}^{S_{n}} \tag{1}
\end{equation*}
$$

The irrep labels of $S O(2,4)$ are $\Lambda=\left\{\Delta, j_{L}, j_{R}\right\}$ where $\Delta \in \mathbb{N} \cup\{0\}$ and $j_{L}, j_{R} \in \frac{1}{2} \mathbb{N} \cup\{0\}$
We use an oscillator construction to build representations of $S O(2,4)$. The vacuum $|0\rangle$ corresponds to $X^{\otimes n}$ and the oscillator $a_{i \mu}^{\dagger}$ acting on the vacuum $a_{i \mu}^{\dagger}|0\rangle$ corresponds to the derivative $\partial_{\mu}$ acting on the $i$ th site.

To get highest weight states (HWSs) we take linear combinations $A_{h \mu}^{\dagger}=J_{h}^{i} a_{i \mu}^{\dagger}$ corresponding to the hook representation $H=[n-1,1]$ of $S_{n} . h$ transforms in $V_{H}$.

The HWSs are given with $S O(4)$ indices by

$$
\begin{equation*}
A_{h_{1} \mu_{1}}^{\dagger} \cdots A_{h_{k} \mu_{k}}^{\dagger}|0\rangle \tag{2}
\end{equation*}
$$

or alternatively with $S U(2)_{L} \times S U(2)_{R}$ indices

$$
\begin{equation*}
A_{h_{1} \alpha_{1} \dot{\alpha}_{1}}^{\dagger} \cdots A_{h_{k} \alpha_{k} \dot{\alpha}_{k}}^{\dagger}|0\rangle \tag{3}
\end{equation*}
$$

## 2 The offshell case

## 2.1 $G L(4)$ offshell operator

We want to organise the operators

$$
\begin{equation*}
A_{h_{1} \mu_{1}}^{\dagger} \cdots A_{h_{k} \mu_{k}}^{\dagger}|0\rangle \tag{4}
\end{equation*}
$$

into irreps of $S O(4)$ and $S_{n}$. A first step is to organise them into irreps of $G L(4)$ and $G L\left(d_{H}\right)$.
We can organise the $S O(4)$ indices $\mu_{i}$ in terms of $G L(4)$ reps $K$ with $k$ boxes and $\leq 4$ rows. These reduce to $S O(4)$ reps in a procedure we will describe later. If $V_{4}^{G L(4)}$ is the fundamental of $G L(4)$ then Schur-Weyl duality tells us that

$$
\begin{equation*}
\left(V_{4}^{G L(4)}\right)^{\otimes k}=\bigoplus_{K \in P(k, 4)} V_{K}^{G L(4)} \otimes V_{K}^{S_{k}} \tag{5}
\end{equation*}
$$

We have summed over partitions $K$ in $P(k, 4)$ with $k$ boxes and $\leq 4$ rows, which correspond both to representations of $G L(4)$ and $S_{k}$. The corresponding Clebsch-Gordan coefficient is

$$
\begin{equation*}
C_{K, M_{K}, a_{K}}^{\mu_{1} \cdots \mu_{k}} \tag{6}
\end{equation*}
$$

[^0]$M_{K}$ labels the $G L(4)$ state in $V_{K}^{G L(4)}$ and $a_{K}$ the $S_{k}$ state in $V_{K}^{S_{k}}$.
Similarly we can organise the $V_{H}$ indices $h_{i}$ in terms of $G L\left(d_{H}\right)$ reps $K^{\prime}$ with $k$ boxes and $\leq d_{H}$ rows. These reduce to $S_{n}$ reps in a procedure we will describe later. By Schur-Weyl duality
\[

$$
\begin{equation*}
\left(V_{H}\right)^{\otimes k}=\bigoplus_{K^{\prime} \in P\left(k, d_{H}\right)} V_{K^{\prime}}^{G L\left(d_{H}\right)} \otimes V_{K^{\prime}}^{S_{k}} \tag{7}
\end{equation*}
$$

\]

which Clebsch-Gordan coefficient

$$
\begin{equation*}
C_{K^{\prime}, M_{K^{\prime}}^{\prime}, a_{K^{\prime}}^{\prime}}^{h_{1} \cdots h_{k}} \tag{8}
\end{equation*}
$$

Because the $A_{h_{i} \mu_{i}}^{\dagger}$ commute, the overall operator transforms in $\operatorname{Sym}\left(\left(V_{\mathbf{4}} \otimes V_{H}\right)^{\otimes k}\right)$. As discussed in Appendix Section C. 2 this triviality under $S_{k}$ forces $K=K^{\prime}$ and we must sum over the $S_{k}$ states to get

$$
\begin{equation*}
\left|K, M_{K}, M_{K}^{\prime}\right\rangle=\sum_{a_{K}} C_{K, M_{K}, a_{K}}^{\mu_{1} \cdots \mu_{k}} C_{K, M_{K}^{\prime} a_{K}}^{h_{1} \cdots h_{k}} A_{h_{1} \mu_{1}}^{\dagger} \cdots A_{h_{k} \mu_{k}}^{\dagger}|0\rangle \tag{9}
\end{equation*}
$$

Since $K \in P(k, 4)$ it is clear that the rep $K$ organising the hook indices $h_{i}$ can't have more than 4 rows.
This can further be transformed into a state of the symmetric rep $[k]$ of $G L\left(4 d_{H}\right)$ with the Clebsch-Gordan coefficient

$$
\begin{equation*}
\left|[k], M_{[k]}\right\rangle=\sum_{K \in P(k, 4)} \sum_{M_{K}} \sum_{M_{K}^{\prime}} C_{[k], M_{[k]}}^{K, M_{K}, M_{K}^{\prime}}\left|K, M_{K}, M_{K}^{\prime}\right\rangle \tag{10}
\end{equation*}
$$

### 2.2 Decomposing $G L\left(d_{H}\right)$ reps $K$ into $S_{n}$ reps

We can further decompose an irrep $K$ of $G L\left(d_{H}\right)$ into irreps $\lambda$ of $S_{n}$

$$
\begin{equation*}
V_{K}^{G L\left(d_{H}\right)}=\bigoplus_{\lambda \in P(n)} V_{\lambda}^{S_{n}} \otimes V_{\lambda, K} \tag{11}
\end{equation*}
$$

This gives an overall decomposition

$$
\begin{equation*}
\left(V_{H}^{S_{n}}\right)^{\otimes k}=\bigoplus_{\lambda \in P(n), K \in P(k)} V_{\lambda}^{S_{n}} \otimes V_{K}^{S_{k}} \otimes V_{\lambda, K} \tag{12}
\end{equation*}
$$

These reps appear with a multiplicity space $V_{\lambda, K}$ which we label with $\tau$ in the Clebsch-Gordan

$$
\begin{equation*}
C_{\lambda, a_{\lambda}, K, a_{K}, \tau}^{h_{1} \cdots h_{k}} \tag{13}
\end{equation*}
$$

For example for $K=\square$ of $G L\left(d_{H}\right)$ we have

$$
\begin{equation*}
V_{\square}^{G L\left(d_{H}\right)}=\square\left(V_{H}^{\circ 2}\right)=[n] \oplus[n-1,1] \oplus[n-2,2] \tag{14}
\end{equation*}
$$

### 2.3 Decomposing $G L(4)$ reps $K$ into $S O(4)$ reps

$S O(4)$ is a subgroup of $G L(4)$, so representations $K$ of $G L(4)$ are also representations of $S O(4)$. However under $S O(4)$ reps $K$ of $G L(4)$ may be reducible. In general we will have a decomposition

$$
\begin{equation*}
V_{K}^{G L(4)}=\bigoplus_{\Lambda} V_{\Lambda}^{S O(4)} \otimes V_{K, \Lambda} \tag{15}
\end{equation*}
$$

We have summed over reps $\Lambda$ of $S O(4)$ contained inside $K$, which occur with a multiplicity space $V_{K, \Lambda}$ whose dimension is in $\{0,1\}$. An $S O(4)$ rep is a 2-row Young diagram with row-lengths given by the $S U(2)_{L} \times S U(2)_{R}$ spins

$$
\begin{equation*}
\Lambda=\left[j_{L}+j_{R},\left|j_{L}-j_{R}\right|\right] \tag{16}
\end{equation*}
$$

$S O(4)$ has the two invariant tensors

$$
\begin{equation*}
\eta^{\mu_{1} \mu_{2}} \quad \text { and } \quad \epsilon^{\mu_{1} \mu_{2} \mu_{3} \mu_{4}} \tag{17}
\end{equation*}
$$

In $G L(4)$ language these appear in


Reducing the $k$－boxed 4－row $G L(4)$ Young diagram $K$ to $\Lambda$ is a matter of taking account of the two invariant tensors $\eta$ and $\epsilon$ ．First we remove all possible even partitions $2 T$ from $K$ ，corresponding to $\eta$ contractions（products of $\square$ give even partitions）．Then project the remaining 4－row Young diagram $\Lambda^{\prime}$ with $\pi$ to an $S O(4)$ 2－row Young diagram $\Lambda$ ；this removes the $\epsilon$ tensor．Thus

$$
\begin{equation*}
K=\bigoplus_{\Lambda} \operatorname{dim} V_{K, \Lambda} \quad \Lambda=\bigoplus_{2 T, \Lambda^{\prime}} g\left(2 T, \Lambda^{\prime} ; K\right) \pi\left(\Lambda^{\prime}\right) \tag{19}
\end{equation*}
$$

We have summed over even partitions $2 T$ which correspond to contractions $r^{2}$ ．The $\Lambda^{\prime}$ are then projected to $S O(4)$ reps $\Lambda$ ．A complete list of these projections is given in Appendix Section $A$

For example

$$
\begin{align*}
\sharp & =g(\mathbf{1}, \boxminus ; \boxminus) \pi(\boxminus) \oplus g(\square, \square ; \boxminus) \pi(\square) \oplus g(\boxminus, \mathbf{1} ; \boxminus) \pi(\mathbf{1}) \\
& =\pi(\boxminus) \oplus \pi(\square) \oplus \pi(\mathbf{1}) \\
& =\boxminus \oplus \square \oplus \mathbf{1} \tag{20}
\end{align*}
$$

which works dimensionally as $20=10+9+1$ ．
There is however a complication：sometimes $\pi\left(\Lambda^{\prime}\right)$ projects to a representation $\Lambda$ of $S O(4)$ that appears with a sign that cancels another $S O(4)$ rep，for example

$$
\begin{align*}
\boxplus & =g(\mathbf{1}, \boxplus ; \boxplus) \pi(\nexists) \oplus g(\varpi, \boxplus ; \boxplus) \pi(\nexists) \oplus g(\boxplus, 日 ; \boxplus) \pi(\boxminus) \\
& =\pi(\nexists) \oplus \pi(\boxminus) \oplus \pi(日) \\
& =-\varpi \oplus \varpi \oplus 日 \\
& =\boxminus \tag{21}
\end{align*}
$$

We don＇t want some operators to appear with a negative sign and cancel other operators．Thus we redefine ＇effective＇coefficients
－$\tilde{\pi}\left(\Lambda^{\prime}\right)$ such that $\tilde{\pi}\left(\Lambda^{\prime}\right)=\pi\left(\Lambda^{\prime}\right)$ when the sign＂makes sense＂．Otherwise $\tilde{\pi}\left(\Lambda^{\prime}\right)=0$ ．Note that $\tilde{\pi}\left(\Lambda^{\prime}\right)$ is always either 0 or 1．See Appendix Section $B$ for a full description of $\tilde{\pi}$ ．
－$\tilde{g}\left(2 T, \Lambda^{\prime} ; K\right)$ is zero for the reps that get cancelled by the $\pi\left(\Lambda^{\prime}\right)$ which don＇t make sense．Note that $\tilde{g}\left(2 T, \Lambda^{\prime} ; K\right) \leq$ $g\left(2 T, \Lambda^{\prime} ; K\right)$ ．

Thus we get

$$
\begin{equation*}
K=\bigoplus_{\Lambda} \operatorname{dim} V_{K, \Lambda} \quad \Lambda=\bigoplus_{2 T, \Lambda^{\prime}} \tilde{g}\left(2 T, \Lambda^{\prime} ; K\right) \tilde{\pi}\left(\Lambda^{\prime}\right) \tag{22}
\end{equation*}
$$

where everything appears with a positive sign．
So for example

$$
\begin{equation*}
\tilde{\pi}(\boxminus)=0 \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{g}(\square, \boxminus ; \nexists \square)=0 \tag{24}
\end{equation*}
$$

which gives

$$
\begin{align*}
\boxminus & =\tilde{g}(1, \boxminus ; \boxminus) \tilde{\pi}(\boxminus) \oplus \tilde{g}(\square, \boxminus ; \boxminus) \tilde{\pi}(\boxminus) \oplus \tilde{g}(\boxminus, 母 ; \boxminus) \tilde{\pi}(\boxminus) \\
& =\tilde{\pi}(\boxminus) \oplus \tilde{\pi}(\boxminus) \\
& =\boxminus \tag{25}
\end{align*}
$$

[^1]Another example with a much more complicated cancellation

$$
\begin{align*}
& \ddagger=\pi(\square) \oplus \pi(\square) \oplus \pi(\square) \oplus \pi(\square) \oplus \pi\binom{\square}{\square} \oplus \pi(\square) \oplus \pi(\boxminus) \\
& =\amalg \oplus-母 \oplus 0 \oplus 0 \oplus 0 \oplus \square \oplus \mathbf{1} \\
& =\square \oplus 1 \tag{26}
\end{align*}
$$

Dimensionally this works $10=9+1$. In the effective description we would have

$$
\begin{equation*}
\tilde{\pi}(\square)=0 \quad \text { and } \quad \tilde{\pi}(\square)=0 \tag{27}
\end{equation*}
$$

### 2.4 Going backwards

Suppose on the other hand we are given $k$ and $\Lambda$ and we want to work out not only the $G L(4)$ rep $K$ but also the structure of the tensor $K$ and how it contains the two invariant $S O(4)$ tensors

$$
\begin{equation*}
\eta_{\mu_{1} \mu_{2}} \quad \text { and } \quad \epsilon_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}} \tag{28}
\end{equation*}
$$

This is extremely important because in the onshell case we want to apply the equations of motion whenever $\eta$ appears.

The procedure is as follows:

- Take $\Lambda$ and look up its inverses under the $\tilde{\pi}$ projection $\tilde{\pi}^{-1}(\Lambda)=\left\{\Lambda^{\prime}\right\}$. These inverses are listed in Appendix Section B. 1
- Given a $\Lambda^{\prime}$ with $k^{\prime}$ boxes this defines a $G L(4)$ tensor with no contractions $\eta$. $\Lambda^{\prime}$ may now contain $\epsilon^{\prime}$ s.
- Next we need to add $t$ contractions $\eta$ to $\Lambda^{\prime}$ to make it up to a $G L(4)$ Young diagram $K$ with $k=k^{\prime}+2 t$ boxes. We do this by $G L(4)$-tensoring all even partitions $2 T$ with $2 t$ boxes and at most 4 rows with $\Lambda^{\prime}$ to get $K$, as long as the effective coupling is non-zero $\tilde{g}\left(2 T, \Lambda^{\prime} ; K\right) \geq 1$.

For a given $k$ and $\Lambda$ this will give a list of $G L(4)$ tensors $K$

$$
\begin{equation*}
\{K\}=\sum_{k^{\prime}} \bigoplus_{\Lambda^{\prime} \vdash k^{\prime}, 2 T \vdash k-k^{\prime}} \tilde{g}\left(2 T, \Lambda^{\prime} ; K\right) \delta\left(\Lambda=\tilde{\pi}\left(\Lambda^{\prime}\right)\right) \tag{29}
\end{equation*}
$$

This list is entirely positive and contains no cancellations. Looking forward to the $S U(2)_{L} \times S U(2)_{R}$ section, $\Lambda_{L} \otimes \Lambda_{R}=\{K\}$ as defined here.

### 2.5 The explicit decomposed operator

We will now explicitly decompose the $G L(4)$ tensor, separating the $t \eta$ contractions from the $\Lambda^{\prime}$ tensor that projects to $\Lambda$ with $\tilde{\pi}$.

To do this we first want to effect for $W=V_{4} \otimes V_{H}$

$$
\begin{equation*}
\operatorname{Sym}\left(W^{\otimes k}\right) \rightarrow V_{4}^{\otimes 2 t} \otimes V_{4}^{\otimes k^{\prime}} \otimes V_{H}^{\otimes 2 t} \otimes V_{H}^{\otimes k^{\prime}} \tag{30}
\end{equation*}
$$

See Appendix Section C. 3
We get

$$
\begin{align*}
& \left|K, M_{K}, M_{K}^{\prime}, H, \Lambda^{\prime}, \tau\right\rangle \\
& =\sum_{M_{H}, M_{H}^{\prime}} \sum_{M_{\Lambda^{\prime}}, M_{\Lambda^{\prime}}^{\prime}} \sum_{a_{H}, a_{\Lambda^{\prime}}} C_{M_{H}, M_{\Lambda^{\prime}}}^{\tau, M_{K}} C_{M_{H}^{\prime}, M_{\Lambda^{\prime}}^{\prime}}^{\tau, M_{K}^{\prime}} C_{H, M_{H}, a_{H}}^{\mu_{1} \cdots \mu_{2 t}} C_{\Lambda^{\prime}, M_{\Lambda^{\prime}}, a_{\Lambda^{\prime}}}^{\mu_{2 t+1} \cdots \mu_{k}} C_{H, M_{H}, a_{H}}^{h_{1} \cdots h_{2} t} C_{\Lambda^{\prime}, M_{\Lambda^{\prime}}, a_{\Lambda^{\prime}}}^{h_{2 t+1}^{\prime} \cdots h_{k}} A_{h_{1} \mu_{1}}^{\dagger} \cdots A_{h_{k} \mu_{k}}^{\dagger}|0\rangle \tag{31}
\end{align*}
$$

$K$ is a $k$-box, 4-row rep with $G L(4)$ state $M_{K}$ and $G L\left(d_{H}\right)$ state $M_{K}^{\prime} . H \in P(2 t, 4)$ and $\Lambda^{\prime} \in P\left(k^{\prime}, 4\right) . \tau$ runs over $g\left(H, \Lambda^{\prime} ; K\right)$ for the $G L(4)$ tensor product $H \circ \Lambda^{\prime}=\bigoplus_{K} g\left(H, \Lambda^{\prime} ; K\right) K$.

Now we will butcher this operator for the $G L(4)$ to $S O(4)$ decomposition, paying attention to the interplay between $V_{4}$ and $V_{H}$. We will


- This forces an $S_{2}^{t} \ltimes S_{t}$ symmetry on the corresponding $V_{H}^{\otimes 2 t}$ tensor $C_{H, M_{H}^{\prime}, a_{H}}^{h_{1} \cdots h_{2 t}}$. This can be seen most simply if we define $S_{h_{1} h_{2}}^{\dagger} \equiv \eta^{\mu_{1} \mu_{2}} A_{h_{1} \mu_{1}}^{\dagger} A_{h_{1} \mu_{1}}^{\dagger}$ and we see that $C_{H, M_{H}^{\prime}, a_{H}}^{h_{1} \cdots h_{2 t}}$ is contracted with $S_{h_{1} h_{2}}^{\dagger} \cdots S_{h_{2 t-1} h_{2 t}}^{\dagger}$. As discussed below in Section 2.5.1]this symmetry forces $H$ to have only even rows $H=2 T$. It also kills the $a_{2 T}$ multiplicity to leave just the $M_{2 T}^{\prime}$ multiplicity.
- $\tilde{\tau}$ now runs over the effective multiplicity $\tilde{g}\left(2 T, \Lambda^{\prime} ; K\right)$ instead of $g\left(2 T, \Lambda^{\prime} ; K\right)$. Because $K$ is a 4-row tensor, $2 T$ and $\Lambda^{\prime}$ and their product can only have 4 rows.
- $\Lambda^{\prime}$ and its $G L(4)$ state $M_{\Lambda^{\prime}}$ project down to the $S O(4)$ rep $\Lambda$ and $S O(4)$ state $M_{\Lambda}$ with the projection $\tilde{\pi}$. We will write this $\tilde{\Pi}_{\Lambda, M_{\Lambda}}^{\Lambda^{\prime}, M_{\Lambda^{\prime}}}$. There is no multiplicity here.

This results in an operator

$$
\begin{align*}
& \left|K, M_{K}^{\prime}, 2 T, \Lambda^{\prime}, \Lambda, M_{\Lambda}, \tilde{\tau}\right\rangle \\
& =\sum_{a_{\Lambda^{\prime}}} C_{M_{2 T}^{\prime}, M_{\Lambda^{\prime}}}^{\tilde{\tau}, M_{K}^{\prime}} \tilde{\Pi}_{\Lambda, M_{\Lambda}}^{\Lambda^{\prime}, M_{\Lambda^{\prime}}} C_{\Lambda^{\prime}, M_{\Lambda^{\prime}}, a_{\Lambda^{\prime}}}^{\mu_{2 t+1} \cdots \mu_{k}} C_{2 T, M_{2 T}^{\prime}}^{h_{1} \cdots h_{2 t}} C_{\Lambda^{\prime}, M_{\Lambda^{\prime}}^{\prime}, a_{\Lambda^{\prime}}}^{h_{2 t+1} \cdots h_{k}} S_{h_{1} h_{2}}^{\dagger} \cdots S_{h_{2 t-1} h_{2 t}}^{\dagger} A_{h_{2 t+1} \mu_{2 t+1}}^{\dagger} \cdots A_{h_{k} \mu_{k}}^{\dagger}|0\rangle \tag{32}
\end{align*}
$$

To get the $S_{n}$ rep $\lambda$ we must further decompose the $G L\left(d_{H}\right)$ state $M_{K}^{\prime}$ of $K$ along the lines of Section 2.2

### 2.5.1 The $S_{2}^{t} \ltimes S_{t}$ reduction

A note on the coefficients $C_{2 T, M_{2 T}^{\prime}}^{h_{1} h_{2} \cdots h_{2 t}}$. We can first decompose the tensor product $V_{H}^{\otimes 2 t}$ in the obvious way into irreps of $G L\left(V_{H}\right) \otimes S_{2 t}$. This is done with coefficients:

$$
\begin{equation*}
C_{H, M_{H}^{\prime}, a_{H}}^{h_{1} \cdots h_{2 t}} \tag{33}
\end{equation*}
$$

Now the symmetry conditions on the indices are invariance under $S_{2}^{t} \ltimes S_{t}$, i.e picking the trivial rep of this group which comes from $(\mathbf{1}, \mathbf{1})$ of $S_{2}^{t}$ and $S_{t}$. The semi-direct product is a subgroup of $S_{2 t}$. We can decompose the states $\left(H, a_{H}\right)$ of $S_{2 t}$ into irreps of the semidirect product subgroup. We need to pick the trivial irrep. of this semi-direct product. So we have a branching coefficient

$$
\begin{equation*}
C_{H, a_{H}}^{(\mathbf{1}, \mathbf{1})_{S D}}=\delta(H, 2 T) C_{2 T, a_{2 T}}^{(\mathbf{1}, \mathbf{1})_{S D}} \tag{34}
\end{equation*}
$$

In other words the branching coefficient is zero unless $H=2 T$. So we have a decomposition

$$
\begin{equation*}
C_{2 T, M_{2 T}^{\prime}}^{h_{1} h_{2} \cdots h_{2 t}}=C_{2 T, M_{2 T}^{\prime}, a_{2 T}}^{h_{1} \cdots h_{2 t}} C_{2 T, a_{2 T}}^{(\mathbf{1}, \mathbf{1})_{S D}} \tag{35}
\end{equation*}
$$

There is a counting check on the statement that the rep. of $S_{2 t}$ induced from the trivial of $S_{2}^{t} \ltimes S_{t}$ is the direct sum of even YD. The order of the semi-direct product group is $2^{t} t$ !. The rep. induced from the trivial has dimension $\frac{(2 t)!}{t!2^{t}}$. We have checked, in examples (as reported in the Appendix of note-EOM7.tex) that

$$
\begin{equation*}
\frac{(2 t)!}{t!2^{t}}=\sum_{2 T} d_{2 T} \tag{36}
\end{equation*}
$$

Note that the multiplicity of the rep. $H$ of $S_{2 t}$ in the induction of the trivial of the subgroup $S_{2}^{t} \ltimes S_{t}$ is the same as the multiplicity of the trivial of the subgroup in the restriction of $H$ to the subgroup. This induction-restriction duality is Frobenius duality.

The flip Schur-Weyl of this dimension formula is

$$
\begin{equation*}
\operatorname{Dim}_{\frac{d_{H}\left(d_{H}+1\right)}{2}}[t]=\sum_{2 T \in P(2 t)} \operatorname{Dim}_{d_{H}} 2 T \tag{37}
\end{equation*}
$$

## 2.6 $S O(4)$ counting

For a given $S O(4)$ rep $\Lambda$ and dimension $\Delta=n+k$ we have using the final operator (32) and (29)

$$
\begin{equation*}
\operatorname{mult}(\Lambda, \Delta)=\sum_{K \in P(k, 4)} \sum_{k^{\prime}} \bigoplus_{\Lambda^{\prime} \vdash k^{\prime}, 2 T \vdash k-k^{\prime}} \tilde{g}\left(2 T, \Lambda^{\prime} ; K\right) \delta\left(\Lambda=\tilde{\pi}\left(\Lambda^{\prime}\right)\right) \operatorname{Dim}_{d_{H}} K \tag{38}
\end{equation*}
$$

Refining to a specific $S_{n}$ rep $\lambda$ using Section 2.2 we get

$$
\begin{equation*}
\operatorname{mult}(\Lambda, \Delta, \lambda)=\sum_{K \in P(k, 4)} \sum_{k^{\prime}} \sum_{\Lambda^{\prime} \vdash k^{\prime}, 2 T \vdash k-k^{\prime}} \tilde{g}\left(2 T, \Lambda^{\prime} ; K\right) \delta\left(\Lambda=\tilde{\pi}\left(\Lambda^{\prime}\right)\right) \operatorname{mult}\left(V_{H}^{\otimes k}, \lambda \otimes K\right) \tag{39}
\end{equation*}
$$

We prove these formulae below using $S U(2)_{L} \times S U(2)_{R}$ language.

### 2.7 From $S O(4)$ to $S U(2)_{L} \times S U(2)_{R}$

An alternative way of getting the list of $G L(4)$ reps $K$ from $k$ and the $S O(4)$ rep $\Lambda$ is to take the inner product of the two corresponding $G L(2)_{L} \times G L(2)_{R}$ reps. This is more straightforward, but we lose the explicit decomposition of $K$ into $\eta$ 's and $\epsilon$ 's. This is because the two invariant tensors of $S U(2)_{L} \times S U(2)_{R} \epsilon^{\alpha_{1} \alpha_{2}}$ and $\epsilon^{\dot{\alpha}_{1} \dot{\alpha}_{2}}$ don't distinguish $\eta$ from $\epsilon$. The $S O(4)$ tensors are expressed as

$$
\begin{align*}
\eta^{\mu_{1} \mu_{2}} a_{i_{1} \mu_{1}} a_{i_{2} \mu_{2}} & =\epsilon^{\alpha_{1} \alpha_{2}} \epsilon^{\dot{\alpha}_{1} \dot{\alpha}_{2}} a_{i_{1} \alpha_{1} \dot{\alpha}_{1}} a_{i_{2} \alpha_{2} \dot{\alpha}_{2}} \\
\epsilon^{\mu_{1} \mu_{2} \mu_{3} \mu_{4}} a_{i_{1} \mu_{1}} a_{i_{2} \mu_{2}} a_{i_{3} \mu_{3}} a_{i_{4} \mu_{4}} & =\epsilon^{\alpha_{1} \alpha_{2}} \epsilon^{\dot{\alpha}_{1} \dot{\alpha}_{3}} \epsilon^{\alpha_{3} \alpha_{4}} \epsilon^{\dot{\alpha}_{2} \dot{\alpha}_{4}} a_{i_{1} \alpha_{1} \dot{\alpha}_{1}} a_{i_{2} \alpha_{2} \dot{\alpha}_{2}} a_{i_{3} \alpha_{3} \dot{\alpha}_{3}} a_{i_{4} \alpha_{4} \dot{\alpha}_{4}} \tag{40}
\end{align*}
$$

It is however much easier to understand the counting from a $S U(2)_{L} \times S U(2)_{R}$ perspective.

## 2.8 $S U(2)_{L} \times S U(2)_{R}$ offshell operator

For $S U(2)_{L} \times S U(2)_{R}$ we are organising

$$
\begin{equation*}
A_{h_{1} \alpha_{1} \dot{\alpha}_{1}}^{\dagger} \cdots A_{h_{k} \alpha_{k} \dot{\alpha}_{k}}^{\dagger}|0\rangle \tag{41}
\end{equation*}
$$

We can organise the $S U(2)_{L}$ indices $\alpha_{i}$ with a $G L(2)_{L}$ rep $\Lambda_{L}=\left[t_{L}+2 j_{L}, t_{L}\right]$ and the $S U(2)_{R}$ indices $\dot{\alpha}_{i}$ with a $G L(2)_{R}$ rep $\Lambda_{R}=\left[t_{R}+2 j_{R}, t_{R}\right]$. These numbers satisfy $2 t_{L}+2 j_{L}=2 t_{L}+2 j_{L}=k$ so that $\Lambda_{L}$ and $\Lambda_{R}$ both contain $k$ boxes.

We proceed for the $G L(2)_{L} \times G L(2)_{R}$ tensors as for $G L(4)$

$$
\begin{equation*}
C_{\Lambda_{L}, M_{L}, a_{L}}^{\alpha_{1} \cdots \alpha_{k}} C_{\Lambda_{R}, M_{R}, a_{R}}^{\dot{\alpha}_{1} \cdots \dot{\alpha}_{k}} C_{\lambda, a_{\lambda}, \kappa, a_{\kappa}, \tau}^{h_{1} \cdots h_{k}} A_{h_{1} \alpha_{1} \dot{\alpha}_{1}}^{\dagger} \cdots A_{h_{k} \alpha_{k} \dot{\alpha}_{k}}^{\dagger}|0\rangle \tag{42}
\end{equation*}
$$

The $A_{h_{i} \alpha_{i} \dot{\alpha}_{i}}^{\dagger}$ all commute, so the overall operator transforms in the trivial $[k]$ of $S_{k}$. Thus we combine the free $S_{k}$ indices of this operator with an $S_{k}$ Clebsch-Gordan

$$
\begin{align*}
& \hat{\mathcal{O}}\left[\Lambda_{L}, M_{L}, \Lambda_{R}, M_{R}, \lambda, a_{\lambda},\{\tau, \kappa, \hat{\tau}\}\right] \\
& =C_{[k], \tau}^{\Lambda_{L}, a_{L} ; \Lambda_{R}, a_{R} ; \kappa, a_{\kappa}} C_{\Lambda_{L}, M_{L}, a_{L}}^{\alpha_{1} \cdots \alpha_{k}} C_{\Lambda_{R}, M_{R}, a_{R}}^{\dot{\alpha}_{1} \cdots \dot{\alpha}_{k}} C_{\lambda, a_{\lambda}, \kappa, a_{\kappa}, \tau}^{h_{1} \cdots h_{k}} A_{h_{1} \alpha_{1} \dot{\alpha}_{1}}^{\dagger} \cdots A_{h_{k} \alpha_{k} \dot{\alpha}_{k}}^{\dagger}|0\rangle \tag{43}
\end{align*}
$$

$\hat{\tau}$ labels the multiplicity of $[k]$ in the $S_{k}$ tensor product $\Lambda_{L} \otimes \Lambda_{R} \otimes \kappa$, or alternatively the number of times $\kappa$ appears in the $S_{k}$ tensor product

$$
\begin{equation*}
\Lambda_{L} \otimes \Lambda_{R}=\sum_{\kappa} C\left(\Lambda_{L}, \Lambda_{R}, \kappa\right) \kappa \tag{44}
\end{equation*}
$$

It is a rule from [1] that the inner product of two two-row reps gives reps with at most four rows. Thus $\kappa$ has at most 4 rows.

### 2.8.1 $G L(4)$ as a $G L(2)_{L} \times G L(2)_{R}$ product

We can of course convert between $G L(2)_{L} \times G L(2)_{R}$ and $G L(4)$, noticing that $2 \times 2=4$.
Applying this to the tensor products we see that the 4 -row $\kappa$ in equation (44) is identified with the $G L(4)$ rep $K$.

Thus to get $K$ from $k$ and $\Lambda$, we find the corresponding $G L(2)_{L} \times G L(2)_{R}$ reps $\Lambda_{L}$ and $\Lambda_{R}$ and take their inner product.

### 2.9 Offshell counting

We focus on the question:

- Given an $S O(2,4)$ rep $\left(\Delta=n+k, j_{L}, j_{R}\right)$ and an $S_{n}$ rep $\lambda$, how many HWSs are there?

This is most easily answered from the $S U(2)_{L} \times S U(2)_{R}$ point of view. Considering the operator (43), we just sum over the $\{\tau, K, \hat{\tau}\}$ multiplicity labels

$$
\begin{equation*}
\operatorname{mult}\left(\Delta, j_{L}, j_{R}, \lambda\right)=\sum_{K \vdash k} C\left(\Lambda_{L}, \Lambda_{R}, K\right) \operatorname{mult}\left(V_{H}^{\otimes k}, \lambda \otimes K\right) \tag{45}
\end{equation*}
$$

where $\hat{\tau}$ runs over the $C\left(\Lambda_{L}, \Lambda_{R}, K\right)$ times $K$ appears in $\Lambda_{L} \otimes \Lambda_{R}$ and $\tau$ runs over the $\operatorname{mult}\left(V_{H}^{\otimes k}, \lambda \otimes K\right)$ times $\lambda \otimes K$ appears in $V_{H}^{\otimes k}$.

More readably we could write this

$$
\begin{equation*}
\operatorname{mult}\left(\Delta, j_{L}, j_{R}, \lambda\right)=\text { number of times } \lambda \text { appears in }\left[\Lambda_{L} \otimes \Lambda_{R}\right]\left(V_{H}^{\otimes k}\right) \tag{46}
\end{equation*}
$$

Given the relation between the inner product and $S O(4)$ tensors we can also write this in $S O(4)$ language

$$
\begin{align*}
\operatorname{mult}(\Delta, \Lambda, \lambda) & =\sum_{k^{\prime}} \sum_{\Lambda^{\prime} \vdash k^{\prime}} \delta\left(\Lambda=\tilde{\pi}\left(\Lambda^{\prime}\right)\right) \text { number of times } \lambda \text { appears in }\left[[ \frac { k - k ^ { \prime } } { 2 } ] \left(\square^{\left.\left.\circ \frac{k-k^{\prime}}{2}\right) \circ_{4} \Lambda^{\prime}\right]\left(V_{H}^{\otimes k}\right)}\right.\right.  \tag{47}\\
& =\sum_{k^{\prime}} \sum_{\Lambda^{\prime} \vdash k^{\prime}} \sum_{2 T \vdash k-k^{\prime}} \sum_{K \vdash k} \delta\left(\Lambda=\tilde{\pi}\left(\Lambda^{\prime}\right)\right) \tilde{g}\left(2 T, \Lambda^{\prime} ; K\right) \operatorname{mult}\left(V_{H}^{\otimes k}, \lambda \otimes K\right) \tag{48}
\end{align*}
$$

where $2 T$ are even partitions; we remember that the tensor products $\circ_{4}$ and $\tilde{g}$ only allow $K$ with 4 rows; it is also only an effective tensor product.

### 2.10 Offshell character expansion and proof of counting

Below we will focus on doing the decomposition (11) in terms of $S O(2,4)$ characters. If $\chi_{F}(s, x, y)$ is the character of $V_{F}$ then

$$
\begin{equation*}
\left[\chi_{F}(s, x, y)\right]^{n}=\sum_{\Delta, j_{L}, j_{R}} \sum_{\lambda \vdash n} \operatorname{mult}\left(\Delta, j_{L}, j_{R}, \lambda\right) d_{\lambda} \chi_{\Delta, j_{L}, j_{R}}(s, x, y) \tag{49}
\end{equation*}
$$

The offshell character of $V_{F}$, all the descendants of $X$, is

$$
\begin{equation*}
\chi_{F}(s, x, y)=\chi_{1,0,0}=P s \tag{50}
\end{equation*}
$$

$P$ accounts for all the descendants with derivatives

$$
\begin{equation*}
P=\frac{1}{(1-s x y)\left(1-s x^{-1} y\right)\left(1-s x y^{-1}\right)\left(1-s x^{-1} y^{-1}\right)} \tag{51}
\end{equation*}
$$

For a general $S O(2,4)$ irrep

$$
\begin{equation*}
\chi_{\Delta, j_{L}, j_{R}}(s, x, y)=P s^{\Delta} \chi_{j_{L}}(X) \chi_{j_{R}}(Y) \tag{52}
\end{equation*}
$$

where $\Delta=n+k$, where $k$ is the number of derivatives for the highest weight, and $X=\operatorname{diag}\left(x, x^{-1}\right) \in S U(2)$. Since $X$ is in $S U(2)$ we can remove columns of length two when we work out the character, e.g.

$$
\begin{equation*}
\chi_{\square \square \square}(X)=\chi_{\square \square}(X) \tag{53}
\end{equation*}
$$

As we worked out previously in Section 7 of sl2diag.dvi and Section 2 of note-EOM.dvi by expanding $P^{n-1}$ in terms of $V_{H}$

$$
\begin{align*}
\chi_{F}^{n}= & {[P s]^{n} } \\
= & P s^{n} \sum_{k=0}^{\infty} s^{k} \sum_{\Lambda_{L}, \Lambda_{R}, \Lambda_{2} \vdash k} \sum_{\lambda \vdash n} d_{\lambda} \operatorname{mult}\left(V_{H}^{\otimes k}, \lambda \otimes \Lambda_{2}\right) C\left(\Lambda_{L}, \Lambda_{R}, \Lambda_{2}\right) \chi_{\Lambda_{L}}(X) \chi_{\Lambda_{R}}(Y) \\
= & P s^{n} \sum_{k, j_{L}, j_{R}=0}^{\infty} s^{k} \chi_{j_{L}}(X) \chi_{j_{R}}(Y) \sum_{\lambda \vdash n} d_{\lambda} \\
& \sum_{\Lambda_{2} \vdash k} \operatorname{mult}\left(V_{H}^{\otimes k}, \lambda \otimes \Lambda_{2}\right) C\left(\Lambda_{L}=\left[\frac{k}{2}+j_{L}, \frac{k}{2}-j_{L}\right], \Lambda_{R}=\left[\frac{k}{2}+j_{R}, \frac{k}{2}-j_{R}\right], \Lambda_{2}\right) \tag{54}
\end{align*}
$$

To make life simpler write $\Lambda_{L}=\left\{k, j_{L}\right\}$ for the $S U(2)$ 2-row Young diagram with k boxes corresponding to the $\operatorname{spin} j_{L}$ rep.

$$
\begin{equation*}
\Lambda_{L}=\left[\frac{k}{2}+j_{L}, \frac{k}{2}-j_{L}\right] \equiv\left\{k, j_{L}\right\} \sim\left[2 j_{L}\right] \tag{55}
\end{equation*}
$$

where $\left[2 j_{L}\right]$ is the single-row Young diagram with $2 j_{L}$ boxes, corresponding to the spin $j_{L}$ rep.
This result matches with our goal (49)

$$
\begin{equation*}
\operatorname{mult}\left(\Delta=n+k, j_{L}, j_{R}, \lambda\right)=\sum_{\Lambda_{2} \vdash k} \operatorname{mult}\left(V_{H}^{\otimes k}, \lambda \otimes \Lambda_{2}\right) C\left(\Lambda_{L}=\left\{k, j_{L}\right\}, \Lambda_{R}=\left\{k, j_{R}\right\}, \Lambda_{2}\right) \tag{56}
\end{equation*}
$$

To get the overall multiplicity of the $S O(2,4)$, ignoring the $S_{n}$ rep, we sum over the $\lambda \vdash n$,

$$
\begin{align*}
\operatorname{mult}\left(\Delta=n+k, j_{L}, j_{R}\right) & =\sum_{\lambda \vdash n} d_{\lambda} \operatorname{mult}\left(\Delta=n+k, j_{L}, j_{R}, \lambda\right) \\
& =\sum_{\Lambda_{2} \vdash k} \operatorname{dim}_{n-1} \Lambda_{2} C\left(\Lambda_{L}=\left\{k, j_{L}\right\}, \Lambda_{R}=\left\{k, j_{R}\right\}, \Lambda_{2}\right) \tag{57}
\end{align*}
$$

## 3 Examples for the offshell case

### 3.1 Scalar: $j_{L}=j_{R}=0$

Given $k$ and $j_{L}=j_{R}=0$ we want to find the $G L(4)$ reps $K$.
Following the prescription in Section 2.3 the $S O(4)$ rep is $\Lambda=[0]$. Taking the inverse of the $\pi$ projection from equation (148) in Appendix Section A. 1 we get

$$
\begin{equation*}
\pi^{-1}([0])=\left\{\Lambda^{\prime}\right\}=\left\{[0],\left[1^{4}\right]\right\} \tag{58}
\end{equation*}
$$

Next we add the contractions to get a 4 -row $K$ with $k$ boxes.
For $\Lambda^{\prime}=[0], k^{\prime}=0$ and the number of contractions is $t=\frac{k}{2}$. Thus the reps $K$ come from a $G L(4)$ tensor product of [0] with even reps with $k=2 t$ boxes $K=2 T \vdash k$.
$\Lambda^{\prime}=\left[1^{4}\right]$ corresponds to a single $\epsilon$ tensor. $k^{\prime}=4$ and the number of contractions is $t=\frac{k-4}{2}$. The reps $K$ come from a $G L(4)$ tensor product of $\left[1^{4}\right]$ with even reps with $k-4$ boxes $K=\left[1^{4}\right] \circ(2 T \vdash k-4)$.

We find exactly the same expansion of $G L(4)$ reps $K$ by taking the inner product of the two corresponding $G L(2)$ reps:

$$
\begin{equation*}
\Lambda_{L} \otimes \Lambda_{R}=\left[\frac{k}{2}, \frac{k}{2}\right] \otimes\left[\frac{k}{2}, \frac{k}{2}\right]=\left[\left[\frac{k}{2}\right]\left(\square^{\circ \frac{k}{2}}\right)+母 \circ\left[\frac{k-4}{2}\right]\left(\square^{\left.\circ \frac{k-4}{2}\right)}\right]_{\leq 4}=\sum K\right. \tag{59}
\end{equation*}
$$

$[\cdot]_{\leq 4}$ means only keep $K$ if $K$ has 4 or fewer rows, i.e. we are implementing the $G L(4)$ tensor product $\circ_{4}$. $\otimes$ is the $S_{k}$ inner product.
${ }^{* * *}$ This isn't proved, but true up to $k=12$. NB: this observation first brought up by Paul in Mathematica file for $k=6$. Should be able to prove using this paper on the inner product of two-row reps: [1].

This splits into Young diagrams with even and odd row lengths. If we write each diagram in terms of all 4 row lengths, e.g. [3, 1, 0, 0] for $[3,1]$, then $K$ runs over all Young diagrams of size $k$ with differences between the rows always even ( $[3,1,0,0]$ fails this test).

We never need more than one copy of $B$ building the Young diagrams because, e.g. $\#$ appears in $\square \square\left(\square^{\circ 4}\right)$.
${ }^{* * *}$ Clarify this.
That the LHS of (59) gives the correct offshell counting is proved above.
Following Section [2.5 the operators corresponding to (59) are

$$
\begin{align*}
& C_{M_{2 T}}^{M_{K}^{\prime}} C_{2 T, M_{2 T}^{\prime}}^{h_{1} \cdots h_{2}} S_{h_{1} h_{2}}^{\dagger} \cdots S_{h_{2 t-1} h_{2 t}}^{\dagger}|0\rangle \\
& C_{\left.M_{2 T}^{\prime}, M_{[14}^{\prime}\right]}^{\tilde{\tau}, M_{K}^{\prime}} \tilde{\Pi}_{[0]}^{\left[1^{4}\right], M_{\left[1^{4}\right]}^{\prime}} C_{\left.\left[1^{4}\right], M_{[14]}^{\prime}\right]}^{\mu_{2 t+1 \cdots \mu_{k}}^{\prime}} C_{2 T, M_{2 T}^{\prime}}^{h_{1} \cdots h_{2 t}} C_{\left[1^{4}\right], M_{\left[1^{4}\right]}^{\prime}}^{h_{2 t+1} \cdots h_{k}} \quad S_{h_{1} h_{2}}^{\dagger} \cdots S_{h_{2 t-1} h_{2 t}}^{\dagger} A_{h_{2 t+1} \mu_{2 t+1}}^{\dagger} \cdots A_{h_{k} \mu_{k}}^{\dagger}|0\rangle \tag{60}
\end{align*}
$$

This covers all independent cases where all indices are contracted and the $S O(4)$ state is trivial. Since $K \in P(k, 4)$ this restricts the number of rows in $2 T$.

### 3.1.1 Explicit examples

For $k=2$ only $\Lambda^{\prime}=[0]$ applies and we just get

$$
\begin{equation*}
K=日 \otimes 日=\square \tag{61}
\end{equation*}
$$

For $k=4$ we also get a contribution from $\Lambda^{\prime}=\left[1^{4}\right]$ too

$$
\begin{align*}
\sum K & =\sharp \otimes \boxminus=\square\left(\square^{\circ 2}\right)+B \\
& =\square \square+\theta+B \tag{62}
\end{align*}
$$

For $k=6$

$$
\begin{align*}
& \sum K=\Pi \otimes \Pi=\left[\square\left(\square^{\circ 3}\right)+\theta \circ \square\right]_{\leq 4} \\
& =\square \square \square+\square+\square+\square \\
& =\square\left(\square \square^{\circ 3}\right)+\theta \circ \square-\vec{\theta} \tag{63}
\end{align*}
$$

In the final line we have rewritten it as a generic $G L(\infty)$ tensor product or general symmetric group outer product, but subtracting the reps with more than 4 rows. This will be useful when we count the onshell operators.

For $k=8$

$$
\begin{aligned}
& \sum K=\square \otimes \square=\left[\square \square\left(\square^{\circ 4}\right)+B \circ \square\left(\square^{\circ 2}\right)\right]_{\leq 4} \\
& =\square \square \square+\square \square+\square \square \square
\end{aligned}
$$

For $k=10$

$$
\begin{aligned}
& \left.\sum K=\Pi \otimes \Pi=\left[\square \square^{\circ 5}\right)+\theta \circ \square \square\left(\square^{\circ 3}\right)\right]_{\leq 4}
\end{aligned}
$$

$$
\begin{align*}
& +\square^{\square}+\#^{\square 10}+\square \\
& =\square \square \square\left(\square^{\circ 5}\right)+B \circ \square \square\left(\square^{\circ 3}\right)-\boxminus \tag{65}
\end{align*}
$$

For $k=12$
For the offshell case

## $3.2 \quad j_{L}-j_{R}=0$

Given $k$ and $j_{L}=j_{R}=j$ we want to find the $G L(4)$ reps $K$ ．
Following the prescription in Section 2．3］the $S O(4)$ rep is $\Lambda=[2 j]$ ．Taking the inverse of the $\pi$ projection from equation（149）in Appendix Section A． 1 we get

$$
\begin{equation*}
\pi^{-1}([2 j])=\left\{\Lambda^{\prime}\right\}=\{[2 j],[2 j, 1,1],-[2 j, 2,1,1],-[2 j, 2,2,2]\} \tag{67}
\end{equation*}
$$

The first two here make sense since

$$
\begin{equation*}
日 \sim \square \sim \epsilon^{\mu_{1} \mu_{2} \mu_{3} \mu_{4}} A_{\left[h_{2} \mu_{2}\right.}^{\dagger} A_{h_{3} \mu_{3}}^{\dagger} A_{\left.h_{4}\right] \mu_{4}}^{\dagger} \tag{68}
\end{equation*}
$$

Note that the last two appear for $j \geq 1$ and appear with a minus sign．
Next we add the contractions to get a 4 －row $K$ with $k$ boxes．
For $\Lambda^{\prime}=[2 j], k^{\prime}=2 j$ and the number of contractions is $t=\frac{k-2 j}{2}$ ．
For $\Lambda^{\prime}=[2 j, 1,1], k^{\prime}=2 j+2$ and the number of contractions is $t=\frac{k-2 j-2}{2}$ ．
For $\Lambda^{\prime}=-[2 j, 2,1,1], k^{\prime}=2 j+4$ and the number of contractions is $t=\frac{k-2 j-4}{2}$ ．
For $\Lambda^{\prime}=-[2 j, 2,2,2], k^{\prime}=2 j+6$ and the number of contractions is $t=\frac{k-2 j-6}{2}$ ．

## 3．2．1 $j_{L}=j_{R}=\frac{1}{2}$

$k=1$ is trivial．
For $k=3$ we get

$$
\begin{align*}
\sum K=\Lambda_{L} \otimes \Lambda_{R}=\boxminus \otimes \boxminus & =\square \circ \square+\text { 日 } \\
& =\square+\square+\text { 日 } \tag{69}
\end{align*}
$$

For $k=5$ we get

$$
\begin{align*}
\sum K=\Lambda_{L} \otimes \Lambda_{R}=\boxplus \otimes \Pi & =\square \circ \square\left(\square^{\circ 2}\right)+\theta^{\circ} \square \\
& =\square \square+\square+\boxplus+\boxplus+\square+\boxminus \tag{70}
\end{align*}
$$

## 3．2．2 $j_{L}=j_{R}=1$

$k=2$ is trivial．
For $k=4$ we get

$$
\begin{align*}
\sum K=\Lambda_{L} \otimes \Lambda_{R}=\Pi \otimes \Pi \square & =\square{ }^{\circ} \square+\boxminus \\
& =\square \square+\square+\boxplus+巴 \tag{71}
\end{align*}
$$

For $k=6$ we get

$$
\begin{align*}
& \sum K=\Lambda_{L} \otimes \Lambda_{R}=\Pi \otimes \boxtimes \square=\square{ }^{\circ} \square\left(\square^{\circ 2}\right)+\boxminus \circ \square-\nexists \\
& =\square \square+\square+\Pi+\Pi+\Pi+\boxplus \\
& +母+\square+\square \tag{72}
\end{align*}
$$

This is the first time a $\Lambda^{\prime}$ appears with a minus sign；it cancels the appearance of $\boxplus$ in $\boxminus \circ \square$ ．
For $k=8$ we get

$$
\begin{equation*}
\sum K=\Lambda_{L} \otimes \Lambda_{R}=\Pi \otimes \Pi \nabla=\square{ }^{\circ} \square\left(\square^{\circ 3}\right)+母^{\circ} \square\left(\square^{\circ 2}\right)-\nexists^{\circ} \square-\nexists \tag{73}
\end{equation*}
$$

I＇ve checked this explicitly，but it＇s too tedious to write out．
3.2.3 $\quad j_{L}=j_{R}=\frac{3}{2}$
$k=3$ is trivial.
For $k=5$ we get

$$
\begin{align*}
\sum K=\Lambda_{L} \otimes \Lambda_{R}=\square \square \otimes \square \square & =\square \square^{\circ} \square+\square \\
& =\square \square+\square \square+\square+\square \tag{74}
\end{align*}
$$

## $3.3 \quad j_{L}-j_{R}=1$

Given $k$ and $j_{L}=j_{R}+1$ we want to find the $G L(4)$ reps $K$.
Following the prescription in Section 2.3 the $S O(4)$ rep is $\Lambda=\left[2 j_{R}+1,1\right]$. Taking the inverse of the $\pi$ projection from equation (150) in Appendix Section A.1 we get

$$
\begin{equation*}
\pi^{-1}\left(\left[2 j_{R}+1,1\right]\right)=\left\{\Lambda^{\prime}\right\}=\left\{\left[2 j_{R}+1,1\right],-\left[2 j_{R}+1,2,2,1\right]\right\} \tag{75}
\end{equation*}
$$

Next we add the contractions to get a 4 -row $K$ with $k$ boxes.
For $\Lambda^{\prime}=\left[2 j_{R}+1,1\right], k^{\prime}=2 j_{R}+2$ and the number of contractions is $t=\frac{k-2 j_{R}-2}{2}$.
For $\Lambda^{\prime}=-\left[2 j_{R}+1,2,2,1\right], k^{\prime}=2 j_{R}+6$ and the number of contractions is $t=\frac{k-2 j_{R}-6}{2}$. This is only a legal diagram for $j_{R} \geq \frac{1}{2}$.
3.3.1 $\quad j_{L}=1, j_{R}=0$
$\Lambda=[1,1]$.
$k=2$ is trivial.
For $k=4$ we get

$$
\begin{align*}
\sum K=\Lambda_{L} \otimes \Lambda_{R}=\square \otimes \square & =母^{\circ} \square \\
& =\square+\square \tag{76}
\end{align*}
$$

For $k=6$ we get

$$
\begin{equation*}
\sum K=\Lambda_{L} \otimes \Lambda_{R}=\square \boxtimes \square=\exists^{\circ} \square\left(\square^{\circ 2}\right) \tag{77}
\end{equation*}
$$

3.3.2 $j_{L}=\frac{3}{2}, j_{R}=\frac{1}{2}$
$\Lambda=[2,1]$.
$k=3$ is trivial.
For $k=5$ we get

$$
\begin{align*}
\sum K=\Lambda_{L} \otimes \Lambda_{R}=\square \square \otimes \square & =\square \circ \square \\
& =\square \square+\square+\square \square+\square \tag{78}
\end{align*}
$$

For $k=7$ we get a contribution from $\Lambda^{\prime}=[2,2,2,1]$ which has to appear with a minus sign to gel with the inner product

$$
\begin{equation*}
\left.\sum K=\Lambda_{L} \otimes \Lambda_{R}=\square \square \otimes \square=\square \circ \square \square^{\circ 2}\right)-\boxminus \tag{79}
\end{equation*}
$$

This is another example of the important of the minus sign.
3.3.3 $\quad j_{L}=2, j_{R}=1$
$\Lambda=[3,1]$.
$k=4$ is trivial.

For $k=6$ we get

$$
\begin{align*}
\sum K=\Lambda_{L} \otimes \Lambda_{R}=\square \square \square \square & =\square \square \square \\
& =\square \square+\square \tag{80}
\end{align*}
$$

For $k=8$ we get a contribution from $\Lambda^{\prime}=[3,2,2,1]$ which has to appear with a minus sign to gel with the inner product

$$
\begin{equation*}
\left.\sum K=\Lambda_{L} \otimes \Lambda_{R}=\square \square \square \square \square \square \square \square \square^{\circ 2}\right)-\boxminus \tag{81}
\end{equation*}
$$

## $3.4 \quad j_{L}-j_{R}=2$

Following the prescription in Section 2.3 the $S O(4)$ rep is $\Lambda=\left[2 j_{R}+2,2\right]$. Taking the inverse of the $\pi$ projection from equation (151) in Appendix Section A.1 we get

$$
\begin{equation*}
\pi^{-1}\left(\left[2 j_{R}+2,2\right]\right)=\left\{\Lambda^{\prime}\right\}=\left\{\left[2 j_{R}+2,2\right],-\left[2 j_{R}+2,2,2\right]\right\} \tag{82}
\end{equation*}
$$

3.4.1 $\quad j_{L}=2, j_{R}=0$

For $k=4$ this is trivial

$$
\begin{equation*}
\sum K=\square \otimes \boxminus=\boxminus \tag{83}
\end{equation*}
$$

For $k=6$ we get a non-trivial contribution with a minus sign

$$
\begin{align*}
\sum K=\square \square \square & =\boxminus \circ \square-\boxminus \\
& =\square \square+\square \tag{84}
\end{align*}
$$

## $3.5 \quad j_{L}-j_{R}=3$

Following the prescription in Section 2.3 the $S O(4)$ rep is $\Lambda=\left[2 j_{R}+3,3\right]$. Taking the inverse of the $\pi$ projection from equation (152) in Appendix Section A.1 we get

$$
\begin{equation*}
\pi^{-1}\left(\left[2 j_{R}+3,3\right]\right)=\left\{\Lambda^{\prime}\right\}=\left\{\left[2 j_{R}+3,3\right],-\left[2 j_{R}+3,3,2\right],\left[2 j_{R}+3,3,3,1\right],-\left[2 j_{R}+3,3,3,3\right]\right\} \tag{85}
\end{equation*}
$$

3.5.1 $j_{L}=3, j_{R}=0$

For $k=6$ this is trivial

$$
\begin{equation*}
\sum K=0 \text { س } \tag{86}
\end{equation*}
$$

For $k=8$

$$
\begin{align*}
\sum K=\square \square \square
\end{align*} \begin{array}{|}
\square \square \square & =\square \\
& =\square \square \square+\square \tag{87}
\end{array}
$$

For $k=10$

$$
\begin{align*}
& \left.\sum K=\square \square \square \square \square^{\circ} \square \square^{\circ}\right)-\boxminus \circ \square+\square \tag{88}
\end{align*}
$$

For $k=12$

## 4 The onshell case

### 4.1 The onshell operator

We want to remove the equations of motion for individual fields $\partial^{\mu} \partial_{\mu} X=0$, i.e. when two $a_{i \mu}^{\dagger}$ act on the same place labelled by $i$ and have their $S O(4)$ indices contracted by $\eta$

$$
\begin{equation*}
\eta^{\mu_{1} \mu_{2}} a_{i \mu_{1}}^{\dagger} a_{i \mu_{2}}^{\dagger} \tag{90}
\end{equation*}
$$

There is no summation over $i$. It is clear that we must work in the $S O(4)$ formalism to do this.
For our HWS consider the contraction of two hooks $V_{H}$

$$
\begin{equation*}
\eta^{\mu_{1} \mu_{2}} A_{h_{1} \mu_{1}}^{\dagger} A_{h_{2} \mu_{2}}^{\dagger} \tag{91}
\end{equation*}
$$

Because $\eta$ is symmetric, as a representation of $S_{n}$ this transforms in $\square\left(V_{H}^{\circ 2}\right)=V_{\text {nat }} \oplus V_{[n-2,2]}$. To apply the EoM we just remove the diagonal $V_{\text {nat }}$ (which corresponds to when $\partial^{\mu} \partial_{\mu}$ are acting on the same site) from $\square\left(V_{H}^{\circ 2}\right)$ to get $V_{B} \equiv V_{[n-2,2]}$. Thus whenever we contract two hooks, we must project to $V_{B}$

$$
\begin{equation*}
\eta^{\mu_{1} \mu_{2}} A_{h_{1} \mu_{1}}^{\dagger} A_{h_{2} \mu_{2}}^{\dagger} \rightarrow B_{h_{1} h_{2}}^{\dagger} \equiv P_{h_{1} h_{2}}^{h_{1}^{\prime} h_{2}^{\prime}} S_{h_{1}^{\prime} h_{2}^{\prime}}^{\dagger}=P_{h_{1} h_{2}}^{h_{1}^{\prime} h_{2}^{\prime}} \eta^{\mu_{1} \mu_{2}} A_{h_{1}^{\prime} \mu_{1}}^{\dagger} A_{h_{2}^{\prime} \mu_{2}}^{\dagger} \tag{92}
\end{equation*}
$$

There is more detail on this projection in note-EOM. If we feed this projected contraction into the offshell operator (32) we find

$$
\begin{align*}
& \left|K, \tilde{M}_{K}^{\prime}, 2 T, \Lambda^{\prime}, \Lambda, M_{\Lambda}, \tilde{\tau}\right\rangle \\
& =\sum_{a_{\Lambda^{\prime}}} C_{\tilde{M}_{2 T}^{\prime}, M_{\Lambda^{\prime}}^{\prime}}^{\tilde{\tau}, \tilde{M}_{K}^{\prime}} \tilde{\Pi}_{\Lambda, M_{\Lambda}}^{\Lambda^{\prime}, M_{\Lambda^{\prime}}} C_{\Lambda^{\prime}, M_{\Lambda^{\prime}}, a_{\Lambda^{\prime}}}^{\mu_{2 t+1} \cdots \mu_{k}} C_{2 T, \tilde{M}_{2 T}^{\prime}}^{h_{1} \cdots h_{2 t}} C_{\Lambda^{\prime}, M_{\Lambda^{\prime}}^{\prime}, a_{\Lambda^{\prime}}}^{h_{2 t+1} \cdots h_{k}} B_{h_{1} h_{2}}^{\dagger} \cdots B_{h_{2 t-1} h_{2 t}}^{\dagger} A_{h_{2 t+1} \mu_{2 t+1}}^{\dagger} \cdots A_{h_{k} \mu_{k}}^{\dagger}|0\rangle \tag{93}
\end{align*}
$$

It's important to note that we've had to modify the $G L\left(d_{H}\right)$ state to $\tilde{M}_{2 T}^{\prime}$ of $2 T$ to account for the fact that we've projected out the equation of motion terms. It's not clear that this really corresponds to a $G L\left(d_{H}\right)$ rep anymore.

A $G L\left(d_{H}\right)$ description of $\operatorname{Sym}\left(V_{B}^{\otimes t}\right)$ is useful to get one description of the counting but not essential. As explained in more detail in symvb.tex we have

$$
\begin{equation*}
\operatorname{Sym}\left(V_{B}^{\otimes t}\right)=\bigoplus_{2 T, \lambda_{2}} V_{2 T, \phi} \otimes V_{\lambda_{2}} \otimes V_{2 T, \lambda_{2}} \tag{94}
\end{equation*}
$$

$V_{2 T, \phi}$ is a 1-dimensional space corresponding to the even rep. $2 T$ of $S_{2 t}$ which transforms as the trivial of the $S_{2}^{t} \ltimes S_{t}$ subgroup. The existence of the decomposition 94 is also useful for replacing $C_{2 T, \tilde{M}_{2 T}}^{h_{1} \cdots h_{2 t}}$ which manifestly makes sense. We replace it with $C_{2 T, \lambda_{2}, a_{\lambda_{2}}, \tau_{2 T, \lambda_{2}}}^{h_{1} \cdots h_{2 t}}$. The state $\tau_{2 T, \lambda_{2}}$ runs over $\operatorname{dim} V_{2 T, \lambda_{2}}$. We can also decompose the $G L\left(d_{H}\right)$ state $M_{\Lambda^{\prime}}^{\prime}$ into $S_{n}$ states:

$$
\begin{equation*}
V_{\Lambda^{\prime}}^{\left(G L\left(d_{H}\right)\right)}=\bigoplus_{\lambda_{3}} V_{\left(S_{n}\right)}^{\lambda_{3}} \otimes V_{\Lambda^{\prime}}^{\lambda_{3}} \tag{95}
\end{equation*}
$$

with a multiplicity label $\tau_{\Lambda^{\prime}, \lambda_{3}}$ running over $\operatorname{Dim} V_{\Lambda^{\prime}}^{\lambda_{3}}$. So we will have the corresponding Clebsch $C_{\lambda_{3}, a_{\lambda_{3}}, \tau_{\Lambda^{\prime}, \lambda_{3}}^{\Lambda^{\prime}} M^{\prime}}^{\prime}$. We can couple the resulting $S_{n}$ state $a_{\lambda_{3}}$ with the state $a_{\lambda_{2}}$ with an $S_{n}$ inner Clebsch $C_{4\left(2 T, \Lambda^{\prime}\right) ; \lambda, a_{\lambda}}^{\lambda_{3}, \lambda_{2}, a_{\lambda_{2}}, a_{\lambda_{3}}}$ constrained by the $G L(4)$ cutoff. The subscript $4\left(2 T, \Lambda^{\prime}\right)$ indicates that $S_{n}$ reps coming from $\Lambda^{\prime}$ and $S_{n}$ reps which were coupled to $2 T$ are coupled to only the $\lambda$ which are constrained to by the requirement that $2 T \otimes \Lambda^{\prime}$ does not have more than 4 rows.

The formula gets longer, but teh steps are simple :

$$
\begin{align*}
& \left|\lambda\left(S_{n}\right), \lambda_{2}\left(S_{n}\right), \lambda_{3}\left(S_{n}\right), \tau_{2 T, \lambda_{2}}, \tau_{\Lambda^{\prime}, \lambda_{2}}, 2 T\left(S_{2 t}\right), \Lambda^{\prime}, \Lambda(s o(4)), M_{\Lambda}\right\rangle \\
& =C_{4\left(2 T, \Lambda^{\prime}\right) ; \lambda, a_{\lambda}}^{\lambda_{3}, \lambda_{2}, a_{\lambda_{2}}, a_{\lambda_{3}}} C_{\lambda_{3}, a_{\lambda_{3}}, \tau_{\Lambda^{\prime}, \lambda_{3}}^{\prime}}^{\Lambda^{\prime}} \tilde{\Pi}_{\Lambda, M_{\Lambda}}^{\Lambda^{\prime}, M_{\Lambda^{\prime}}} C_{2 T, \lambda_{2}, a_{\lambda_{2}}, \tau_{2 T, \lambda_{2}}}^{h_{1} \cdots h_{\Lambda_{2 t}}} C_{\Lambda^{\prime}, M_{\Lambda^{\prime}}, a_{\Lambda^{\prime}}}^{\mu_{2 t+1} \cdots \mu_{k}} C_{\Lambda^{\prime}, M_{\Lambda^{\prime}}^{\prime}, a_{\Lambda^{\prime}}}^{h_{2 t+1} \cdots h_{k}} \\
& B_{h_{1} h_{2}}^{\dagger} \cdots B_{h_{2 t-1} h_{2 t}}^{\dagger} A_{h_{2 t+1} \mu_{2 t+1}}^{\dagger} \cdots A_{h_{k} \mu_{k}}^{\dagger}|0\rangle \tag{96}
\end{align*}
$$

In the above ket, we have made explicit what group the rep. label belongs to, so the formula is easier to read. The label same $\Lambda^{\prime}$ is used for $G L(4), G L\left(d_{H}\right), S_{k^{\prime}}$, which is due to Schur-Weyl duality and $S_{k^{\prime}}$ symmetry, which is explained in more detail in section C. 2 All repeated state-label indices are summed.

Where do the $G L(4)$ cutoffs appear in the above formula？$\Lambda^{\prime}$ is a $G L(4)$ label，also shared by other groups， so it imposes $G L(4)$ cutoffs．Compared to 93 the updated 96 has lost the $G L\left(d_{H}\right)$－Clebsch $C_{\tilde{M}_{2 T}^{\prime}, M_{\Lambda^{\prime}}^{\prime}}^{\tilde{\tau}, \tilde{M}_{M}^{\prime}}$ ．When we had $G L\left(d_{H}\right)$ states in the off－shell case，it was easy to state how the $G L(4)$ cutoff acts．It is clear we still need a $G L(4)$ cutoff，but now it has to constrain the $S_{n}$ tensor product．（ the need for this cutoff can be seen in the $k=6$ example ）．

Exercise 1：Can we try and write a formula for $C_{4 ; \lambda, a_{\lambda}}^{\lambda_{3}, \lambda_{2}, a_{\lambda_{2}}, a_{\lambda_{3}}}$ which makes a little clearer how the 4－cutoff operates．The words describing it above are probably enough to see how it works in examples such as the $k=6$ below，but a neat general formula would be good．

Exercise 2：That should allow us to write a counting formula which is built as a sum of products of manifestly positive multiplicities，but equal to the alternating sum formulae．

## 4．2 $S O(4)$ onshell counting

To account for the loss of these terms in the counting we need to proceed carefully．
In the offshell case for the $\eta$ contractions we had

$$
\begin{equation*}
\operatorname{Sym}\left(\operatorname{Sym}\left(V_{H}^{\circ 2}\right)^{\circ t}\right)=[t]\left(\square\left(V_{H}^{\circ 2}\right)^{\circ t}\right)=\sum_{2 T \in P(2 t)} 2 T\left(V_{H}^{\circ 2 t}\right) \tag{97}
\end{equation*}
$$

By expanding into even Young diagrams with $V_{H}$ indices we could easily see the $G L(4)$ contraint．Here we have

$$
\begin{equation*}
\operatorname{Sym}\left(V_{B}^{\circ t}\right) \tag{98}
\end{equation*}
$$

How do we translate into $V_{H}$ indices so we can see the $G L(4)$ contraints？
Comment ：The dual of $G L(4)$ is $S_{k}$ on $W^{\otimes k}$ ．On $W_{1}^{\otimes 2 t} \otimes W_{2}^{\otimes k^{\prime}}$ it is $S_{2 t} \times S_{k^{\prime}}$ ．As we see in sections C． 2 and C． 3 we expect the $G L(4)$ cutoff to always be expressed in terms of its duals．A $G L\left(d_{H}\right)$ presentation is possible as follows，but should not be essential．

The answer is to write $V_{B}=\square\left(V_{H}^{\circ 2}\right)-V_{\text {nat }}$ and perform the alternating expansion

$$
\begin{align*}
{[t]\left(V_{B}^{\circ t}\right) } & =[t]\left(\left(\square\left(V_{H}^{\circ 2}\right)-V_{\mathrm{nat}}\right)^{\circ t}\right) \\
& =\sum_{p=0}^{t}(-1)^{p}\left[1^{p}\right]\left(V_{\mathrm{nat}}^{\circ p}\right) \circ[t-p]\left(\left(\square\left(V_{H}^{\circ 2}\right)\right)^{\circ t-p}\right) \\
& =\sum_{p=0}^{t} \sum_{2 T \in P(2 t-2 p)}(-1)^{p}\left[1^{p}\right]\left(V_{\mathrm{nat}}^{\circ p}\right) \circ 2 T\left(V_{H}^{\circ 2 t-2 p}\right) \tag{99}
\end{align*}
$$

For example $t=3$

$$
\begin{align*}
\square\left(V_{B}^{\circ 3}\right) & =\square\left(\left(\square\left(V_{H}^{\circ 2}\right)\right)^{\circ 3}\right)-V_{\mathrm{nat}} \circ \square\left(\left(\square\left(V_{H}^{\circ 2}\right)\right)^{\circ 2}\right)+\text { 日 }\left(V_{\mathrm{nat}}^{\circ 2}\right) \circ \square\left(V_{H}^{\circ 2}\right)-日\left(V_{\mathrm{nat}}^{\circ 3}\right) \\
& =(\square \square \square+\square \square)\left(V_{H}^{\circ 6}\right)-V_{\mathrm{nat}} \circ(\square \square+\boxminus)\left(V_{H}^{\circ 4}\right)+日\left(V_{\mathrm{nat}}^{\circ 2}\right) \circ \square\left(V_{H}^{\circ 2}\right)-\text { 日 }\left(V_{\mathrm{nat}}^{\circ 3}\right) \tag{100}
\end{align*}
$$

So to apply the $G L(4)$ constraint properly here，whenever we tensor $2 T\left(V_{H}^{\circ 2 t-2 p}\right)$ with $\Lambda^{\prime}\left(V_{H}^{\circ k^{\prime}}\right)$ we must restrict the result $K \vdash k-2 p$ to 4 rows．

For a given $S O(4)$ rep $\Lambda$ and dimension $\Delta=n+k$ the counting inherits the alternating sum（cf．the offshell formula（38））

$$
\begin{equation*}
\operatorname{mult}_{\mathrm{EoM}}(\Lambda, \Delta)=\sum_{p=0}^{t}(-1)^{p} \sum_{K \in P(k-2 p, 4)} \sum_{k^{\prime}} \sum_{\Lambda^{\prime} \vdash k^{\prime}, 2 T \vdash k-k^{\prime}-2 p} \tilde{g}\left(2 T, \Lambda^{\prime} ; K\right) \delta\left(\Lambda=\tilde{\pi}\left(\Lambda^{\prime}\right)\right) \operatorname{Dim}_{d_{\mathrm{nat}}}\left[1^{p}\right] \operatorname{Dim}_{d_{H}} K \tag{101}
\end{equation*}
$$

Refining to a specific $S_{n}$ rep $\lambda$（cf．offshell version（39））we must expand out

$$
\begin{equation*}
\left[1^{p}\right]\left(V_{\mathrm{nat}}^{\circ p}\right) \otimes K\left(V_{H}^{\circ k-2 p}\right) \tag{102}
\end{equation*}
$$

into $S_{n}$ reps．This is done in detail below．
We prove these formulae below using the $S U(2)_{L} \times S U(2)_{R}$ character expansion．

### 4.3 Onshell character expansion

For the character of $V_{F}$ we must now apply the EoM and remove terms like $\partial_{\mu} \partial^{\mu} X$ from $V_{F}$. This gives a character

$$
\begin{equation*}
\chi_{F}=\chi_{1,0,0}=P\left(1-s^{2}\right) s \tag{103}
\end{equation*}
$$

For $n \geq 3$ the characters are not modified from the off-shell case

$$
\begin{equation*}
\chi_{\Delta, j_{L}, j_{R}}=P s^{\Delta} \chi_{j_{L}}(X) \chi_{j_{R}}(Y) \tag{104}
\end{equation*}
$$

***What was the story with $n=2$ ?
Expanding the character for $V_{F}^{\otimes n}$

$$
\begin{align*}
\chi_{F}^{n} & =\left[P\left(1-s^{2}\right) s\right]^{n} \\
& =P\left(1-s^{2}\right)^{n} s^{n} \sum_{q=0}^{\infty} s^{q} \sum_{\Lambda_{L}, \Lambda_{R}, \Lambda_{2} \vdash q} \sum_{\lambda_{1} \vdash n} d_{\lambda_{1}} \operatorname{mult}\left(V_{H}^{\otimes q}, \lambda_{1} \otimes \Lambda_{2}\right) C\left(\Lambda_{L}, \Lambda_{R}, \Lambda_{2}\right) \chi_{\Lambda_{L}}(X) \chi_{\Lambda_{R}}(Y) \\
& =P s^{n} \sum_{p=0}^{n}(-1)^{p} s^{2 p}\binom{n}{p} \sum_{q=0}^{\infty} s^{q} \sum_{\Lambda_{L}, \Lambda_{R}, \Lambda_{2} \vdash q} \sum_{\lambda_{1} \vdash n} d_{\lambda_{1}} \operatorname{mult}\left(V_{H}^{\otimes q}, \lambda_{1} \otimes \Lambda_{2}\right) C\left(\Lambda_{L}, \Lambda_{R}, \Lambda_{2}\right) \chi_{\Lambda_{L}}(X) \chi_{\Lambda_{R}}(Y) \tag{105}
\end{align*}
$$

Now make the crucial step of identifying the binomial coefficient with the antisymmetric product of $V_{\text {nat }}$ 's that appears in the expansion of $V_{B}$ in (99)

$$
\begin{equation*}
\binom{n}{p}=\operatorname{dim}\left[1^{p}\right]\left(V_{\text {nat }}^{\circ p}\right) \tag{106}
\end{equation*}
$$

Collect powers of $s^{k}$ where $k=2 p+q$

$$
\begin{equation*}
P s^{n} \sum_{k=0}^{\infty} s^{k} \sum_{p=0}^{n}(-1)^{p} d_{[\text {anti nat } \otimes p]} \sum_{\Lambda_{L}, \Lambda_{R}, \Lambda_{2} \vdash k-2 p} \sum_{\lambda_{1} \vdash n} d_{\lambda_{1}} \operatorname{mult}\left(V_{H}^{\otimes k-2 p}, \lambda_{1} \otimes \Lambda_{2}\right) C\left(\Lambda_{L}, \Lambda_{R}, \Lambda_{2}\right) \chi_{\Lambda_{L}}(X) \chi_{\Lambda_{R}}(Y) \tag{107}
\end{equation*}
$$

Obviously the summand vanishes if $k-2 p<0$. We see that each time we increase $p$ we drop the number of boxes available for the $\Lambda_{L} \otimes \Lambda_{R}$ inner product by two and increase the number of anti-symmetrised $V_{\text {nat }}$ by one.

Next take the tensor product $V_{\text {[antinat }{ }^{\otimes p]}} \otimes V_{\lambda_{1}}$

$$
\begin{equation*}
d_{\left[\text {anti nat }{ }^{\otimes p}\right]} d_{\lambda_{1}}=\sum_{\lambda \vdash n} C\left(\left[\text { anti nat }^{\otimes p}\right], \lambda_{1}, \lambda\right) d_{\lambda} \tag{108}
\end{equation*}
$$

and rearrange

$$
\begin{align*}
\chi_{F}^{n}= & P s^{n} \sum_{k, j_{L}, j_{R}=0}^{\infty} s^{k} \chi_{j_{L}}(X) \chi_{j_{R}}(Y) \sum_{\lambda \vdash n} d_{\lambda} \\
& \sum_{p=0}^{n}(-1)^{p} \sum_{\lambda_{1} \vdash n} C\left(\left[\operatorname{antinat}^{\otimes p}\right], \lambda_{1}, \lambda\right) \sum_{\Lambda_{2} \vdash k-2 p} \operatorname{mult}\left(V_{H}^{\otimes k-2 p}, \lambda_{1} \otimes \Lambda_{2}\right) \\
& C\left(\Lambda_{L}=\left\{k-2 p, j_{L}\right\}, \Lambda_{R}=\left\{k-2 p, j_{R}\right\}, \Lambda_{2}\right) \tag{109}
\end{align*}
$$

What is really going on here? We take the original $V_{\lambda}$ with EoM and for each $p$ we are removing some of the $\lambda$, via anti $\left(V_{\text {nat }}^{\otimes p}\right)=V_{\left[n-p+1,1^{p-1}\right]} \oplus V_{\left[n-p, 1^{p}\right]}$.

This result matches with our goal (49)

$$
\begin{align*}
\operatorname{mult}_{\mathrm{EoM}}\left(\Delta=n+k, j_{L}, j_{R}, \lambda\right)= & \sum_{p=0}^{n}(-1)^{p} \sum_{\lambda_{1} \vdash n} C\left(\left[\operatorname{antinat}^{\otimes p}\right], \lambda_{1}, \lambda\right) \sum_{\Lambda_{2} \vdash k-2 p} \operatorname{mult}\left(V_{H}^{\otimes k-2 p}, \lambda_{1} \otimes \Lambda_{2}\right) \\
& C\left(\Lambda_{L}=\left\{k-2 p, j_{L}\right\}, \Lambda_{R}=\left\{k-2 p, j_{R}\right\}, \Lambda_{2}\right) \tag{110}
\end{align*}
$$

More readably we could write this

$$
\begin{equation*}
\operatorname{mult} \operatorname{EoM}\left(\Delta, j_{L}, j_{R}, \lambda\right)=\text { number of times } \lambda \text { appears in } \sum_{p=0}^{n}(-1)^{p}\left\{\left[1^{p}\right]\left(V_{\mathrm{nat}}^{\circ p}\right) \circ\left[\Lambda_{L} \otimes \Lambda_{R}\right]\left(V_{H}^{\otimes k-2 p}\right)\right\} \tag{111}
\end{equation*}
$$

Each time we increase $p$ we remove a column from each of $\Lambda_{L}$ and $\Lambda_{R}$.
If we're not interested in the $S_{n}$ multiplicity then

$$
\begin{align*}
\operatorname{mult}_{\mathrm{EoM}}\left(\Delta, j_{L}, j_{R}\right) & =\sum_{\lambda} d_{\lambda} \operatorname{mult} \\
& =\sum_{p=0}^{n} \sum_{K \vdash k-2 p}(-1)^{p} C\left(\Lambda_{L} \otimes \Lambda_{L}, j_{R}, \lambda\right) \operatorname{Dim}_{d_{\mathrm{nat}}}\left[1^{p}\right] \operatorname{Dim}_{d_{H}} K \tag{112}
\end{align*}
$$

This matches (101).

## 5 Examples for the onshell case

### 5.1 Scalar: $j_{L}=j_{R}=0$

Compare this section to its offshell equivalent in Section 3.1. In the decomposition of $G L(4)$ reps $K$ in (59) we now just substitute $\square\left(V_{H}^{\text {○2 }}\right)$ with $V_{B}$. However we must be aware of the alternating expansion of $[t]\left(V_{B}\right)$ when we enforce the $G L(4)$ tensor products. If we now do the expansion of $S_{n}$ reps we get

$$
\begin{align*}
& {\left[\left[\frac{k}{2}\right]\left(V_{B}^{\circ \frac{k}{2}}\right)+\text { B }\left(V_{H}^{\circ 4}\right) \circ\left[\frac{k-4}{2}\right]\left(V_{B}^{\circ \frac{k-4}{2}}\right)\right]_{\leq 4}} \\
& =\left[\frac{k}{2}\right]\left(V_{B}^{\circ \frac{k}{2}}\right)+\text { B }\left(V_{H}^{\circ 4}\right) \circ\left[\frac{k-4}{2}\right]\left(V_{B}^{\circ \frac{k-4}{2}}\right) \\
& \quad-\sum_{p=0}^{\frac{k-6}{2}}(-1)^{p}\left[1^{p}\right]\left(V_{\text {nat }}^{\circ p}\right) \circ\left[\left[\frac{k-2 p}{2}\right]\left(\square\left(V_{H}^{\circ 2}\right)^{\circ \frac{k-2 p}{2}}\right)+B\left(V_{H}^{\circ 4}\right) \circ\left[\frac{k-2 p-4}{2}\right]\left(\square\left(V_{H}^{\circ 2}\right)^{\circ \frac{k-2 p-4}{2}}\right)\right]_{>4} \tag{113}
\end{align*}
$$

In the second line, just as we have done in the explicit offshell examples in Section 3.1.1 we have written the $G L(4)$ tensor product first as an unconstrained $G L(\infty)$ tensor product followed by the subtraction of reps with more than 4 rows.

In terms of operators the counting in (113) corresponds to the operators

$$
\begin{align*}
& B_{h_{1} h_{2}}^{\dagger} \cdots B_{h_{2 t-1} h_{2 t}}^{\dagger}|0\rangle \\
& B_{h_{1} h_{2}}^{\dagger} \cdots B_{h_{2 t-1} h_{2 t}}^{\dagger} \epsilon^{\mu_{1} \mu_{2} \mu_{3} \mu_{4}} A_{\left[h_{1} \mu_{1}\right.}^{\dagger} \cdots A_{\left.h_{4}\right] \mu_{4}}^{\dagger}|0\rangle \tag{114}
\end{align*}
$$

This covers all independent cases where all indices are contracted.
Not that for these operators Young diagrams with more than four rows just vanish because there are only $4 \mu$ indices.

In this section we get sloppy with notation and write $\square \square\left(V_{H}\right)$ instead of $\square \square\left(V_{H}^{\circ 2}\right)$ - it should be obvious from the number of boxes what space we're symmetrising.
5.1.1 $k=2, j_{L}, j_{R}=0$

For the offshell case we have

$$
\begin{equation*}
(\exists \otimes 日)\left(V_{H}\right)=\square\left(V_{H}\right) \tag{115}
\end{equation*}
$$

For the onshell case we have

$$
\begin{equation*}
V_{B} \tag{116}
\end{equation*}
$$

corresponding to the operator

$$
\begin{equation*}
B_{h_{1} h_{2}}^{\dagger}|0\rangle \tag{117}
\end{equation*}
$$

5.1.2 $k=4, j_{L}, j_{R}=0$

For the offshell case we have

$$
\begin{equation*}
(\boxminus \otimes \boxminus)\left(V_{H}\right)=\square\left(\square\left(V_{H}\right)\right)+\theta\left(V_{H}\right)=\square\left(V_{H}\right)+\boxminus\left(V_{H}\right)+\theta\left(V_{H}\right) \tag{118}
\end{equation*}
$$

For the onshell case we have

$$
\begin{equation*}
\square\left(V_{B}\right)+\exists\left(V_{H}\right) \tag{119}
\end{equation*}
$$

corresponding to the operators

$$
\begin{equation*}
B_{h_{1} h_{2}}^{\dagger} \cdots B_{h_{3} h_{4}}^{\dagger}|0\rangle \quad \text { and } \quad \epsilon^{\mu_{1} \mu_{2} \mu_{3} \mu_{4}} A_{\left[h_{1} \mu_{1}\right.}^{\dagger} \cdots A_{\left.h_{4}\right] \mu_{4}}^{\dagger}|0\rangle \tag{120}
\end{equation*}
$$

This correctly gives the number of HWS with these quantum numbers and EoM

$$
\begin{equation*}
\frac{(n-1)^{2}(n-2)(n-3)}{6} \tag{121}
\end{equation*}
$$

### 5.1.3 $k=6, j_{L}, j_{R}=0$

Here is where problems originally occured in Paul's Mathematica file. That problem turned out to be generic.
For the offshell case we have

$$
\begin{align*}
(\boxminus \otimes \square)\left(V_{H}\right) & =\left[\square\left(\square\left(V_{H}\right)\right)+\theta\left(V_{H}\right) \circ \square\left(V_{H}\right)\right]_{\leq 4} \\
& =\square \square \square\left(V_{H}\right)+\square \square\left(V_{H}\right)+\boxminus\left(V_{H}\right)+母\left(V_{H}\right) \tag{122}
\end{align*}
$$

For the onshell case we have

$$
\begin{equation*}
\left[\square\left(V_{B}\right)+\theta\left(V_{H}\right) \circ V_{B}\right]_{\leq 4}=\square\left(V_{B}\right)+\theta\left(V_{H}\right) \circ V_{B}-\boxminus\left(V_{H}\right) \tag{123}
\end{equation*}
$$

corresponding to the operators

$$
\begin{equation*}
B_{h_{1} h_{2}}^{\dagger} B_{h_{3} h_{4}}^{\dagger} B_{h_{5} h_{6}}^{\dagger}|0\rangle \quad \text { and } \quad B_{h_{1} h_{2}}^{\dagger} \epsilon^{\mu_{3} \mu_{4} \mu_{5} \mu_{6}} A_{\left[h_{3} \mu_{3}\right.}^{\dagger} \cdots A_{\left.h_{6}\right] \mu_{6}}^{\dagger}|0\rangle \tag{124}
\end{equation*}
$$

This correctly gives the number of HWS with these quantum numbers and EoM

$$
\begin{equation*}
\frac{n(n-1)(n-2)(n-3)\left(5 n^{2}-21 n+28\right)}{144} \tag{125}
\end{equation*}
$$

This example shows the need for the $C_{4\left(2 T, \Lambda^{\prime}\right), . .}^{\ldots}$, i.e the $G L(4)$ corrected $S_{n}$ Clebschs. A simple example fo exercise (1) is to do in it this case.
5.1.4 $k=8, j_{L}, j_{R}=0$

From an $S O(4)$ point of view, this can happen in two different ways

$$
\begin{array}{r}
\eta \eta \eta \eta \\
\eta \eta \epsilon \tag{127}
\end{array}
$$

One might think that

$$
\begin{equation*}
\epsilon \epsilon \tag{128}
\end{equation*}
$$

is a separate case, but it is one of (126) when they're antisymmetrised.
*** Clarify this.
For the offshell case we have


The first 5 cases are (126); the last 2 are (127).
We write first 5 cases as

$$
\begin{equation*}
\square \square \square) \tag{130}
\end{equation*}
$$

The last two cases are roughly
B०ㅁㅁ)

But we must remember that we only allow $G L(4)$ reps so we must remove extra stuff since

$$
\begin{equation*}
\theta \circ \square(\square)=\theta \circ(\square+\square)=\exists^{\square}+\exists^{\square}+\sharp+\vec{B}+\frac{\square}{B} \tag{132}
\end{equation*}
$$

Thus

For the onshell case we substitute $\square$ with $V_{B}$.

$$
\begin{align*}
& {\left[\square\left(V_{B}\right)+\theta\left(V_{H}\right) \circ \square\left(V_{B}\right)\right]_{\leq 4}} \\
& =\square\left(V_{B}\right)+\theta\left(V_{H}\right) \circ \square\left(V_{B}\right)-\boxminus\left(V_{H}\right)-\boxminus\left(V_{H}\right)-\ddot{B}\left(V_{H}\right)+V_{\mathrm{nat}} \circ \square^{\square}\left(V_{H}\right) \tag{134}
\end{align*}
$$

This correctly gives the number of HWS with these quantum numbers and EoM

$$
\begin{equation*}
\frac{n(n-1)(n-2)(n-3)\left(7 n^{4}-48 n^{3}+143 n^{2}-222 n+180\right)}{1440} \tag{135}
\end{equation*}
$$

5.1.5 $k=10, j_{L}, j_{R}=0$

For the offshell case


For the onshell case

$$
\begin{aligned}
& {\left[\square \square\left(V_{B}\right)+\theta\left(V_{H}\right) \circ \square\left(V_{B}\right)\right]_{\leq 4}} \\
& =\square \square\left(V_{B}\right)+B\left(V_{H}\right) \circ \square\left(V_{B}\right) \\
& -\sharp\left(V_{H}\right)
\end{aligned}
$$

$$
\begin{align*}
& -\boxminus\left(V_{\text {nat }}\right) \circ \boxminus\left(V_{H}\right) \tag{137}
\end{align*}
$$

This correctly gives the number of HWS with these quantum numbers and EoM

$$
\begin{equation*}
\frac{n(n-1)(n-2)(n-3)\left(7 n^{6}-63 n^{5}+285 n^{4}-825 n^{3}+1608 n^{2}-276 n+1280\right)}{14400} \tag{138}
\end{equation*}
$$

## 5.1. $6 \quad k=12, j_{L}, j_{R}=0$

For the offshell case


For the onsheel case the correct way of getting this is detailed in a SAGE file.


The general formula is below.
It correctly gives dimension

$$
\begin{equation*}
\frac{n(n-1)(n-2)(n-3)\left(11 n^{8}-117 n^{7}+702 n^{6}-2960 n^{5}+9219 n^{4}-21083 n^{3}+34588 n^{2}-36320 n+21000\right)}{302400} \tag{141}
\end{equation*}
$$

## 6 An incorrect theorem

One can expand $V_{B}$ and $V_{\text {nat }}$ in terms of $V_{H}$. One might think one could just then expand

$$
\begin{equation*}
\left[\frac{k}{2}\right]\left(V_{B}\right)+\text { 日 }\left(V_{H}\right) \circ\left[\frac{k}{2}-2\right]\left(V_{B}\right) \tag{142}
\end{equation*}
$$

in terms of $V_{H}$ and then throw away reps with more than 4 rows. This doesn't work, see A4 notebook 23/3/09. One needs to ignore the $\left[1^{p}\right]\left(V_{\text {nat }}\right)$ when throwing away rows, as in (113). I don't understand why.

## A $\pi$ projection

In this section Young diagrams are mostly written in terms of their columns lengths, i.e. we write $\left[2^{k_{2}}, 1^{k_{1}}\right]^{T}$ instead of $\left[k_{1}+k_{2}, k_{2}\right]$.

We follow the decomposition in Koike and Terada [2].
To decompose a representation $K$ of $G L(2 n)$ into representations $\Lambda$ of $S O(2 n)$ we first remove all possible combinations of contractions $\eta$ from $K$ to get a Young diagram $\Lambda^{\prime}$. Then we project it to an $n$-row representation $\Lambda$ of $S O(2 n)$ with $\pi$.

$$
\begin{equation*}
K=\bigoplus_{2 T, \Lambda^{\prime}} g\left(2 T, \Lambda^{\prime} ; K\right) \pi\left(\Lambda^{\prime}\right)=\bigoplus_{\Lambda} \operatorname{dim} V_{K, \Lambda} \Lambda \tag{143}
\end{equation*}
$$

We have summed over even partitions $2 T$ which correspond to contractions $\eta$.
The projection $\pi$ works as follows

- List the $l$ column lengths of $\Lambda^{\prime}$.
- Fold the columns up at $n+i-1$, where $i \in\{1, \ldots l\}$ labels each column. Define $\vec{k}$ after cancelling folded with unfolded boxes. For $S O(4)$, i.e. $n=2$, this means that if the first column is of length 4 , replace it with one of length $k_{1}=0$; if the first column is 3 , replace it by $k_{1}=1$; if the second column is 4 replace it by $k_{2}=2$.
- Define $\vec{t}$ by $t_{i}=k_{i}-i+1$.
- Define $\vec{T}$ by re-ordering $\vec{t}$ so that $T_{j}=t_{\sigma(i)}$ for some permutation $\sigma \in S_{l}$ and $n \geq T_{1}>T_{2}>\cdots>T_{l}$.
- Define $\vec{\mu}$ by $\mu_{i}=T_{i}+i-1$. These are the column lengths of $\Lambda=\pi\left(\Lambda^{\prime}\right)$.
- It appears with a sign given by the sign of the permutation $\sigma$.

As an example take $\Lambda^{\prime}=[6,5,3,3]=[4,4,4,2,2,1]^{T}$ for $n=2$ and project it to $\Lambda$ of $S O(4)$.

$$
\begin{equation*}
\Lambda^{\prime}=\rightleftarrows \tag{144}
\end{equation*}
$$

Folding up we get $\vec{k}=(0,2,4,2,2,1)$. Applying the subtraction we get $\vec{t}=(0,1,2,-1,-2,-4)$. Rearranging by size we get $T=(2,1,0,-1,-2,-4)$ and $\sigma=(13)$. Finally doing the addition $\Lambda=-[2,2,2,2,2,1]^{T}$ where the sign is the sign of the permutation $\sigma=(13)$.

Diagrams with two rows left the same

$$
\begin{equation*}
\pi\left(\left[2^{k_{2}}, 1^{k_{1}}\right]^{T}\right)=\left[2^{k_{2}}, 1^{k_{1}}\right]^{T} \tag{145}
\end{equation*}
$$

for $k_{1}, k_{2} \geq 0$.
For diagrams with three rows

$$
\begin{align*}
\pi\left(\left[3,1^{k}\right]^{T}\right) & =\left[1^{k+1}\right]^{T} \\
\pi\left([3,2, *]^{T}\right) & =0 \\
\pi\left(\left[3,3,2^{k_{2}}, 1^{k_{1}}\right]^{T}\right) & =-\left[2^{k_{2}+2}, 1^{k_{1}}\right]^{T} \\
\pi\left([3,3,3, *]^{T}\right) & =0 \tag{146}
\end{align*}
$$

for $k, k_{1}, k_{2} \geq 0 . *$ represents any column lengths that give a legitimate Young diagram.
The first line is pretty intuitive. A column of length 3 along with $k$ columns of length 1 is replaced by a new Young diagram where we have $k+1$ columns of length 1. Equivalently the projected Young diagram has a row of length $[k+1]$. Note the sign in the third line.

For diagrams with four rows the non-zero projections are

$$
\begin{align*}
\pi\left([4]^{T}\right) & =[0]^{T}=1 \text { dim. rep. } \\
\pi\left(\left[4,2,1^{k}\right]^{T}\right) & =-\left[1^{k+2}\right]^{T} \\
\pi\left(\left[4,3,1^{k}\right]^{T}\right) & =-\left[2,1^{k+1}\right]^{T} \\
\pi\left(\left[4,3,3,2^{k_{2}}, 1^{k_{1}}\right]^{T}\right) & =\left[2^{k_{2}+3}, 1^{k_{1}}\right]^{T} \\
\pi\left(\left[4,4,1^{k}\right]^{T}\right) & =-\left[1^{k+2}\right]^{T} \\
\pi\left(\left[4,4,4,2^{k_{2}}, 1^{k_{1}}\right]^{T}\right) & =-\left[2^{k_{2}+3}, 1^{k_{1}}\right]^{T} \tag{147}
\end{align*}
$$

for $k, k_{1}, k_{2} \geq 0$.

## A. 1 inverses of $\pi$ projection

$$
\begin{equation*}
\pi^{-1}\left([0]^{T}\right)=\left\{(+)[0]^{T},(+)[4]^{T}\right\} \tag{148}
\end{equation*}
$$

$$
\begin{align*}
\pi^{-1}\left(\left[1^{a}\right]^{T}\right)= & (+)\left[1^{a}\right]^{T} \\
& (+)\left[3,1^{a-1}\right]^{T} \\
& (-)\left[4,2,1^{a-2}\right]^{T} \\
& (-)\left[4,4,1^{a-2}\right]^{T}  \tag{149}\\
\pi^{-1}\left(\left[2,1^{a}\right]^{T}\right)= & (+)\left[2,1^{a}\right]^{T} \\
& (-)\left[4,3,1^{a-1}\right]^{T}  \tag{150}\\
\pi^{-1}\left(\left[2,2,1^{a}\right]^{T}\right)= & (+)\left[2,2,1^{a}\right]^{T} \\
& (-)\left[3,3,1^{a}\right]^{T}  \tag{151}\\
\pi^{-1}\left(\left[2^{a_{2}+3}, 1^{a_{1}}\right]^{T}\right)= & (+)\left[2^{a_{2}+3}, 1^{a_{1}}\right]^{T} \\
& (-)\left[3,3,2^{a_{2}+1}, 1^{a_{1}}\right]^{T} \\
& (+)\left[4,3,3,2^{a_{2}}, 1^{a_{1}}\right]^{T} \\
& (-)\left[4,4,4,2^{a_{2}}, 1^{a_{1}}\right]^{T} \tag{152}
\end{align*}
$$

for $a, a_{1}, a_{2} \geq 0$.

## B $\tilde{\pi}$ projection

The non-zero $\tilde{\pi}$ projections are those that "make sense"

$$
\begin{align*}
\tilde{\pi}\left(\left[2^{k_{2}}, 1^{k_{1}}\right]^{T}\right) & =\left[2^{k_{2}}, 1^{k_{1}}\right]^{T} \\
\tilde{\pi}\left(\left[3,1^{k}\right]^{T}\right) & =\left[1^{k+1}\right]^{T} \\
\tilde{\pi}\left([4]^{T}\right) & =[0]^{T} \equiv \mathbf{1} \tag{153}
\end{align*}
$$

## B. 1 Inverses of $\tilde{\pi}$ projection

$$
\begin{gather*}
\tilde{\pi}^{-1}\left([0]^{T}\right)=[0]^{T} \\
{[4]^{T}}  \tag{154}\\
\tilde{\pi}^{-1}\left(\left[1^{a}\right]^{T}\right)=\left[1^{a}\right]^{T} \\
{\left[3,1^{a-1}\right]^{T}}  \tag{155}\\
\tilde{\pi}^{-1}\left(\left[2^{b}, 1^{c}\right]^{T}\right)=\left[2^{b}, 1^{c}\right]^{T} \tag{156}
\end{gather*}
$$

for $a, b \geq 1, c \geq 0$.

## C Clebsch-Gordan identities

## C. $1 V^{\otimes\left(n_{1}+n_{2}\right)}$

Suppose we have a decomposition of the fundamental $V$ of $G L(M)$

$$
\begin{equation*}
V^{\otimes n}=\bigoplus_{\Lambda \in P(n, M)} V_{\Lambda}^{S_{n}} \otimes V_{\Lambda}^{G L(M)} \tag{157}
\end{equation*}
$$

with Clebsch-Gordan

$$
\begin{equation*}
C_{\Lambda, M_{\Lambda}, a_{\Lambda}}^{\mu_{1} \cdots \mu_{n}} \tag{158}
\end{equation*}
$$

Suppose we want to decompose this into $n=n_{1}+n_{2}$

$$
\begin{equation*}
V^{\otimes n}=V^{\otimes n_{1}} \otimes V^{\otimes n_{2}}=\left(\bigoplus_{\Lambda_{1} \in P\left(n_{1}, M\right)} V_{\Lambda_{1}}^{S_{n}} \otimes V_{\Lambda_{1}}^{G L(M)}\right) \otimes\left(\bigoplus_{\Lambda_{2} \in P\left(n_{2}, M\right)} V_{\Lambda_{2}}^{S_{n}} \otimes V_{\Lambda_{2}}^{G L(M)}\right) \tag{159}
\end{equation*}
$$

The Clebsch-Gordan coefficients are related by

$$
\begin{equation*}
C_{\Lambda, M_{\Lambda}, a_{\Lambda}}^{\mu_{1} \cdots \mu_{n}}=\sum_{\Lambda_{1}, \Lambda_{2}} \sum_{a_{\Lambda_{1}}, a_{\Lambda_{2}}} \sum_{M_{\Lambda_{1}}, M_{\Lambda_{2}}} \sum_{\tau \in g\left(\Lambda_{1}, \Lambda_{2} ; \Lambda\right)} C_{a_{\Lambda}, \tau}^{a_{\Lambda_{1}}, a_{\Lambda_{2}}} C_{M_{\Lambda}, \tau}^{M_{\Lambda_{1}}, M_{\Lambda_{2}}} C_{\Lambda_{1}, M_{\Lambda_{1}}, a_{\Lambda_{1}}}^{\mu_{1} \cdots \mu_{\Lambda_{1}}} C_{\Lambda_{2}, M_{\Lambda_{2}}, a_{\Lambda_{2}}}^{\mu_{n_{1}+1} \cdots \mu_{n}} \tag{160}
\end{equation*}
$$

$C_{M_{\Lambda}, \tau}^{M_{\Lambda_{1}}, M_{\Lambda_{2}}}$ is the $G L(M)$ Clebsch-Gordan; $C_{a_{\Lambda}, \tau}^{a_{\Lambda_{1}}, a_{\Lambda_{2}}}$ is the $S_{n}$ outer product.

## C. $2 \operatorname{Sym}\left(W^{\otimes k}\right)$

Consider $\operatorname{Sym}\left(W^{\otimes k}\right)$ where $W=V_{1} \otimes V_{2}$ and $V_{1}$ is the fundamental rep of $G L(M)$ and $V_{2}$ of $G L\left(M^{\prime}\right)$. A representative would be

$$
\begin{equation*}
A_{h_{1} \mu_{1}} \cdots A_{h_{k} \mu_{k}} \tag{161}
\end{equation*}
$$

where the $A_{h_{i} \mu_{i}}$ all commute.
We can consider $W$ as the fundamental rep of $G L\left(M M^{\prime}\right)$ so that

$$
\begin{equation*}
\operatorname{Sym}\left(W^{\otimes k}\right)=V_{[k]}^{G L\left(M M^{\prime}\right)} \tag{162}
\end{equation*}
$$

The Clebsch-Gordan for this is

$$
\begin{equation*}
C_{[k], M_{[k]}}^{h_{1} \mu_{1} \cdots h_{k} \mu_{k}} \tag{163}
\end{equation*}
$$

However, decomposing in terms of $G L(M)$ and $G L\left(M^{\prime}\right)$ separately we have

$$
\begin{equation*}
V_{1}^{\otimes k}=\bigoplus_{\Lambda_{1} \in P(k, M)} V_{\Lambda_{1}}^{S_{k}} \otimes V_{\Lambda_{1}}^{G L(M)} \tag{164}
\end{equation*}
$$

with Clebsch-Gordan coefficient

$$
\begin{equation*}
C_{\Lambda_{1}, M_{\Lambda_{1}}, a_{\Lambda_{1}}}^{h_{1} \cdots h_{k}} \tag{165}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{2}^{\otimes k}=\bigoplus_{\Lambda_{2} \in P\left(n, M^{\prime}\right)} V_{\Lambda_{2}}^{S_{k}} \otimes V_{\Lambda_{2}}^{G L\left(M^{\prime}\right)} \tag{166}
\end{equation*}
$$

with Clebsch-Gordan coefficient

$$
\begin{equation*}
C_{\Lambda_{2}, M_{\Lambda_{2}}, m_{\Lambda_{2}}}^{\mu_{1} \cdots \mu_{k}} \tag{167}
\end{equation*}
$$

Given the $S_{k}$ invariance of $\operatorname{Sym}\left(W^{\otimes k}\right)$ we must have for the $S_{k}$ inner product

$$
\begin{equation*}
[k] \in \Lambda_{1} \otimes \Lambda_{2} \tag{168}
\end{equation*}
$$

which forces $\Lambda_{1}=\Lambda_{2}$ and we must sum over the $S_{k}$ states $a_{\Lambda_{1}}=a_{\Lambda_{2}}$. So that

$$
\begin{equation*}
\left|[k], M_{[k]}\right\rangle=C_{[k], M_{[k]}}^{h_{1} \mu_{1} \cdots h_{k} \mu_{k}}=\sum_{\Lambda_{1}} \sum_{a_{\Lambda_{1}}} C_{\Lambda_{1}, M_{\Lambda_{1}}, M_{\Lambda_{1}}^{\prime}}^{[k], M_{[k]}} C_{\Lambda_{1}, M_{\Lambda_{1}}, a_{\Lambda_{1}}}^{h_{1} \cdots h_{k}} C_{\Lambda_{1}, M_{\Lambda_{1}}^{\prime}, a_{\Lambda_{1}}}^{\mu_{1} \cdots \mu_{k}} \tag{169}
\end{equation*}
$$

Counting-wise this is

$$
\begin{equation*}
\operatorname{Dim}_{M M^{\prime}}[k]=\sum_{\Lambda_{1} \in P\left(k, \min \left(M, M^{\prime}\right)\right)} \operatorname{Dim}_{M} \Lambda_{1} \operatorname{Dim}_{M^{\prime}} \Lambda_{1} \tag{170}
\end{equation*}
$$

## C. $3 \operatorname{Sym}\left(W^{\otimes 2 t+k^{\prime}}\right)$

We want to combine Appendix Sections C. 2 and C. 1 First we do the split

$$
\begin{equation*}
W^{\otimes 2 t+k^{\prime}} \rightarrow V_{1}^{\otimes 2 t+k^{\prime}} \otimes V_{2}^{\otimes 2 t+k^{\prime}} \tag{171}
\end{equation*}
$$

so that

$$
\begin{equation*}
C_{[k], M_{[k]}}^{h_{1} \mu_{1} \cdots h_{k} \mu_{k}}=\sum_{K \in P\left(k, \min \left(M, M^{\prime}\right)\right)} \sum_{a_{K}} C_{K, M_{K}, a_{K}}^{h_{1} \cdots h_{k}} C_{K, M_{K}^{\prime}, a_{K}}^{\mu_{1} \cdots \mu_{k}} \tag{172}
\end{equation*}
$$

Then split each tensor into $k=2 t+k^{\prime}$ according to Appendix Section C. 1

$$
\begin{align*}
C_{[k], M_{[k]}}^{h_{1} \mu_{1} \cdots h_{k} \mu_{k}}= & \sum_{K \in P\left(k, \min \left(M, M^{\prime}\right)\right)} \sum_{a_{K}} \\
& \sum_{K_{1}, K_{2}} \sum_{a_{K_{1}, a_{K_{2}}}} \sum_{M_{K_{1}}, M_{K_{2}}} \sum_{\tau \in g\left(K_{1}, K_{2} ; K\right)} C_{a_{K}, \tau}^{a_{K_{1}}, a_{K_{2}}} C_{M_{K}, \tau}^{M_{K_{1}}, M_{K_{2}}} C_{K_{1}, M_{K_{1}}, a_{K_{1}}}^{h_{1} \cdots h_{2 t}} C_{K_{2}, M_{K_{2}}, a_{K_{2}}}^{h_{2 t+1} \cdots h_{k}} \\
& \sum_{\Lambda_{1}, \Lambda_{2}} \sum_{a_{\Lambda_{1}, a_{\Lambda_{2}}}} \sum_{M_{\Lambda_{1}, M_{\Lambda_{2}}}} \sum_{\tau^{\prime} \in g\left(\Lambda_{1}, \Lambda_{2} ; K\right)} C_{a_{K}, \tau^{\prime}}^{a_{\Lambda_{1}, a_{\Lambda_{2}}}} C_{M_{M_{K}^{\prime}}, \tau^{\prime}}^{M_{\Lambda_{1}, M_{2}}} C_{\Lambda_{1}, M_{\Lambda_{1}}, a_{\Lambda_{1}}}^{\mu_{1} \cdots \mu_{2}} C_{\Lambda_{2}, M_{\Lambda_{2}}, a_{\Lambda_{2}}}^{\mu_{2 t+1} \cdots \mu_{k}} \tag{173}
\end{align*}
$$

Next we use a crucial branching coefficient identity

$$
\begin{equation*}
\sum_{a_{K}} C_{a_{K}, \tau}^{a_{K_{1}}, a_{K_{2}}} C_{a_{K}, \tau^{\prime}}^{a_{\Lambda_{1}}, a_{\Lambda_{2}}}=\delta_{K_{1} \Lambda_{1}} \delta_{K_{2} \Lambda_{2}} \delta_{a_{K_{1}} a_{\Lambda_{1}}} \delta_{a_{K_{2}} a_{\Lambda_{2}}} \delta_{\tau \tau^{\prime}} \tag{174}
\end{equation*}
$$

which can be seen using bra-ket notation. This greatly simplifies our equation to

$$
\begin{align*}
C_{[k], M_{[k]}}^{h_{1} \mu_{1} \cdots h_{k} \mu_{k}}= & \sum_{K \in P\left(k, \min \left(M, M^{\prime}\right)\right)} \sum_{K_{1}, K_{2}} \sum_{a_{K_{1}}, a_{K_{2}}} \sum_{M_{K_{1}}, M_{K_{2}}} \sum_{M_{K_{1}, M_{K_{2}}^{\prime}}} \sum_{\tau \in g\left(K_{1}, K_{2} ; K\right)} \\
& C_{M_{K}, \tau}^{M_{K_{1}}, M_{K_{2}}} C_{K_{1}, M_{K_{1}}, a_{K_{1}}}^{h_{1} \cdots h_{2 t}} C_{K_{2}, M_{K_{2}}, a_{K_{2}}}^{h_{2+1} \cdots h_{k}} \\
& C_{M_{K}^{\prime}, \tau}^{M_{K_{1}}^{\prime}, M_{K_{2}}^{\prime}} C_{K_{1}, M_{K_{1}}^{\prime}, a_{K_{1}}}^{\mu_{1} \cdots \mu_{2 t}} C_{K_{2}, M_{K_{2}}^{\prime}, a_{K_{2}}}^{\mu_{2 t+1}^{\prime} \mu_{k}} \tag{175}
\end{align*}
$$

## References

[1] M. H. Rosas, "The Kronecker product of Schur functions indexed by two-row shapes or hook shapes," arXiv:math/0001084.
[2] K. Koike and I. Terada, "Young Diagrammatic methods for the representation theory of the classical groups of type $B_{n}, C_{n}, D_{n}$, " Jour. of Algebra. 107, 466.


[^0]:    ${ }^{1}$ Note that for derivatives of scalars, if $j_{L}$ is integer $j_{R}$ must be too, and similarly if $j_{L}$ is half-integer. We also have $\Delta-n=k \geq 2 j_{L}$ and $\Delta-n=k \geq 2 j_{R}$.

[^1]:    ${ }^{2}$ Since $K$ has $\leq 4$ rows，so must anything that is used to build it using the LR rule，e．g．both $2 T$ and $\Lambda^{\prime}$ ．

