Onshell SO(2,4)

August 3, 2009

Contents

1	Introduction	2
2	The offshell case	2
	2.1 $GL(4)$ offshell operator	2
	2.2 Decomposing $GL(d_H)$ reps K into S_r reps	3
	2.3 Decomposing $GL(4)$ reps K into $SO(4)$ reps	3
	2.4 Going backwards	5
	2.5 The explicit decomposed operator	5
	2.5 1 The $S_2^t \ltimes S_4$ reduction	6
	2.6 SO(4) counting	7
	2.7 From $SO(4)$ to $SU(2)_L \times SU(2)_R$	7
	$2.8 SU(2)_L \times SU(2)_R \dots \dots \dots \dots \dots \dots \dots \dots \dots $	7
	$2.8 + GL(4)$ as a $GL(2)_L \times GL(2)_R$ product	• 7
	2.0.1 $OD(4)$ as a $OD(2)_L \times OD(2)_R$ product $\ldots \ldots \ldots$	8
	2.0 Offshell character expansion and proof of counting	8
	2.10 Onshell character expansion and proof of counting	0
3	Examples for the offshell case	9
	3.1 Scalar: $j_L = j_R = 0$	9
	3.1.1 Explicit examples	10
	$3.2 j_L - j_R = 0 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	11
	$3.2.1 j_L = j_R = \frac{1}{2} \dots \dots$	11
	$3.2.2 j_L = j_R = 1 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	11
	$3.2.3 j_L = j_R = \frac{3}{2} \dots \dots$	12
	$3.3 j_L - j_R = 1 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	12
	$3.3.1 j_L = 1, j_R = 0 \dots \dots$	12
	$3.3.2 j_L = \frac{3}{2}, j_R = \frac{1}{2}$	12
	$3.3.3$ $j_L = 2, j_R = 1$	12
	$3.4 j_L - j_R = 2 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	13
	$3.4.1 j_L = 2, j_R = 0 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	13
	$3.5 j_L - j_R = 3 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	13
	$3.5.1 j_L = 3, j_R = 0 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	13
		-
4	The onshell case	14
	4.1 The onshell operator	14
	4.2 $SO(4)$ onshell counting	15
	4.3 Onshell character expansion	16
5	Examples for the onshell case	17
	5.1 Scalar: $j_L = j_R = 0$	17
	5.1.1 $k = 2, j_L, j_R = 0$	17
	5.1.2 $k = 4, j_L, j_R = 0$	17
	5.1.3 $k = 6, j_L, j_R = 0$	18

	$5.1.4$ $k = 8, j_L, j_R = 0$ $5.1.5$ $k = 10, j_L, j_R = 0$ $5.1.6$ $k = 12, j_L, j_R = 0$	18 19 20
6	An incorrect theorem	20
A	π projection A.1 inverses of π projection	20 21
в	$\tilde{\pi}$ projection B.1 Inverses of $\tilde{\pi}$ projection	22 22
С	Clebsch-Gordan identitiesC.1 $V^{\otimes(n_1+n_2)}$ C.2 $Sym(W^{\otimes k})$	22 22 23
	C.3 Sym $(W^{\otimes 2t+k'})$	24

1 Introduction

Let V_F be the representation of SO(2, 4) containing all the fundamental fields $V_F = \{X, \partial_{\mu}X, \partial_{\mu_1}\partial_{\mu_2}X, \dots\}$. We want to understand how to decompose arbitrary tensor products $V_F^{\otimes n}$ into representations Λ of SO(2, 4) and λ of S_n .

$$V_F^{\otimes n} = \sum_{\Lambda} \sum_{\lambda \vdash n} \operatorname{mult}(\Lambda, \lambda) \ V_{\Lambda}^{SO(2,4)} \otimes \ V_{\lambda}^{S_n}$$
(1)

The irrep labels of SO(2,4) are $\Lambda = \{\Delta, j_L, j_R\}$ where $\Delta \in \mathbb{N} \cup \{0\}$ and $j_L, j_R \in \frac{1}{2}\mathbb{N} \cup \{0\}$.¹

We use an oscillator construction to build representations of SO(2, 4). The vacuum $|0\rangle$ corresponds to $X^{\otimes n}$ and the oscillator $a_{i\mu}^{\dagger}$ acting on the vacuum $a_{i\mu}^{\dagger}|0\rangle$ corresponds to the derivative ∂_{μ} acting on the *i*th site.

To get highest weight states (HWSs) we take linear combinations $A_{h\mu}^{\dagger} = J_h^i a_{i\mu}^{\dagger}$ corresponding to the hook representation H = [n-1, 1] of S_n . h transforms in V_H .

The HWSs are given with SO(4) indices by

$$A_{h_1\mu_1}^{\dagger} \cdots A_{h_k\mu_k}^{\dagger} |0\rangle \tag{2}$$

or alternatively with $SU(2)_L \times SU(2)_R$ indices

$$A^{\dagger}_{h_1\alpha_1\dot{\alpha}_1}\cdots A^{\dagger}_{h_k\alpha_k\dot{\alpha}_k}|0\rangle \tag{3}$$

2 The offshell case

2.1 GL(4) offshell operator

We want to organise the operators

$$A_{h_1\mu_1}^{\dagger}\cdots A_{h_k\mu_k}^{\dagger}|0\rangle \tag{4}$$

into irreps of SO(4) and S_n . A first step is to organise them into irreps of GL(4) and $GL(d_H)$.

We can organise the SO(4) indices μ_i in terms of GL(4) reps K with k boxes and ≤ 4 rows. These reduce to SO(4) reps in a procedure we will describe later. If $V_4^{GL(4)}$ is the fundamental of GL(4) then Schur-Weyl duality tells us that

$$\left(V_{4}^{GL(4)}\right)^{\otimes k} = \bigoplus_{K \in P(k,4)} V_{K}^{GL(4)} \otimes V_{K}^{S_{k}}$$

$$\tag{5}$$

We have summed over partitions K in P(k, 4) with k boxes and ≤ 4 rows, which correspond both to representations of GL(4) and S_k . The corresponding Clebsch-Gordan coefficient is

$$C_{K,M_K,a_K}^{\mu_1\cdots\mu_k} \tag{6}$$

¹Note that for derivatives of scalars, if j_L is integer j_R must be too, and similarly if j_L is half-integer. We also have $\Delta - n = k \ge 2j_L$ and $\Delta - n = k \ge 2j_R$.

 M_K labels the GL(4) state in $V_K^{GL(4)}$ and a_K the S_k state in $V_K^{S_k}$. Similarly we can organise the V_H indices h_i in terms of $GL(d_H)$ reps K' with k boxes and $\leq d_H$ rows. These reduce to S_n reps in a procedure we will describe later. By Schur-Weyl duality

$$(V_H)^{\otimes k} = \bigoplus_{K' \in P(k,d_H)} V_{K'}^{GL(d_H)} \otimes V_{K'}^{S_k}$$

$$\tag{7}$$

which Clebsch-Gordan coefficient

$$C^{h_1\cdots h_k}_{K',M'_{K'},a'_{K'}} \tag{8}$$

Because the $A_{h_i\mu_i}^{\dagger}$ commute, the overall operator transforms in Sym $((V_4 \otimes V_H)^{\otimes k})$. As discussed in Appendix Section C.2, this triviality under S_k forces K = K' and we must sum over the S_k states to get

$$|K, M_K, M'_K\rangle = \sum_{a_K} C^{\mu_1 \cdots \mu_k}_{K, M_K, a_K} C^{h_1 \cdots h_k}_{K, M'_K a_K} A^{\dagger}_{h_1 \mu_1} \cdots A^{\dagger}_{h_k \mu_k} |0\rangle$$
(9)

Since $K \in P(k, 4)$ it is clear that the rep K organising the hook indices h_i can't have more than 4 rows.

This can further be transformed into a state of the symmetric rep [k] of $GL(4d_H)$ with the Clebsch-Gordan coefficient

$$|[k], M_{[k]}\rangle = \sum_{K \in P(k,4)} \sum_{M_K} \sum_{M'_K} C_{[k], M_{[k]}}^{K, M_K, M'_K} | K, M_K, M'_K\rangle$$
(10)

Decomposing $GL(d_H)$ reps K into S_n reps 2.2

We can further decompose an irrep K of $GL(d_H)$ into irreps λ of S_n

$$V_K^{GL(d_H)} = \bigoplus_{\lambda \in P(n)} V_\lambda^{S_n} \otimes V_{\lambda,K}$$
(11)

This gives an overall decomposition

$$\left(V_{H}^{S_{n}}\right)^{\otimes k} = \bigoplus_{\lambda \in P(n), K \in P(k)} V_{\lambda}^{S_{n}} \otimes V_{K}^{S_{k}} \otimes V_{\lambda, K}$$
(12)

These reps appear with a multiplicity space $V_{\lambda,K}$ which we label with τ in the Clebsch-Gordan

$$C^{h_1\cdots h_k}_{\lambda,a_\lambda,K,a_K,\tau} \tag{13}$$

For example for $K = \square$ of $GL(d_H)$ we have

$$V_{\square}^{GL(d_H)} = \square \left(V_H^{\circ 2} \right) = [n] \oplus [n-1,1] \oplus [n-2,2]$$

$$\tag{14}$$

Decomposing GL(4) reps K into SO(4) reps 2.3

SO(4) is a subgroup of GL(4), so representations K of GL(4) are also representations of SO(4). However under SO(4) reps K of GL(4) may be reducible. In general we will have a decomposition

$$V_K^{GL(4)} = \bigoplus_{\Lambda} V_{\Lambda}^{SO(4)} \otimes V_{K,\Lambda}$$
(15)

We have summed over reps Λ of SO(4) contained inside K, which occur with a multiplicity space $V_{K,\Lambda}$ whose dimension is in $\{0,1\}$. An SO(4) rep is a 2-row Young diagram with row-lengths given by the $SU(2)_L \times SU(2)_R$ spins

$$\Lambda = [j_L + j_R, |j_L - j_R|] \tag{16}$$

SO(4) has the two invariant tensors

$$\eta^{\mu_1\mu_2}$$
 and $\epsilon^{\mu_1\mu_2\mu_3\mu_4}$ (17)

In GL(4) language these appear in

$$\square$$
 and \square (18)

Reducing the k-boxed 4-row GL(4) Young diagram K to Λ is a matter of taking account of the two invariant tensors η and ϵ . First we remove all possible even partitions 2T from K, corresponding to η contractions (products of \square give even partitions). Then project the remaining 4-row Young diagram Λ' with π to an SO(4) 2-row Young diagram Λ ; this removes the ϵ tensor. Thus

$$K = \bigoplus_{\Lambda} \dim V_{K,\Lambda} \quad \Lambda = \bigoplus_{2T,\Lambda'} g(2T,\Lambda';K) \quad \pi(\Lambda')$$
(19)

We have summed over even partitions 2T which correspond to contractions η^2 . The Λ' are then projected to SO(4) reps Λ . A complete list of these projections is given in Appendix Section A.

For example

$$= g\left(\mathbf{1}, \blacksquare; \blacksquare\right) \pi\left(\boxdot\right) \oplus g\left(\boxdot, \boxdot; \blacksquare\right) \pi\left(\boxdot\right) \oplus g\left(\boxdot, \mathbf{1}; \blacksquare\right) \pi\left(\mathbf{1}\right)$$
$$= \pi\left(\boxdot\right) \oplus \pi\left(\boxdot\right) \oplus \pi\left(\mathbf{1}\right)$$
$$= \blacksquare \oplus \boxdot \oplus \mathbf{1}$$
(20)

which works dimensionally as 20 = 10 + 9 + 1.

There is however a complication: sometimes $\pi(\Lambda')$ projects to a representation Λ of SO(4) that appears with a sign that cancels another SO(4) rep, for example

$$= g\left(1,];] \qquad \pi (] \qquad \oplus g\left(1,];] \qquad \pi (] \qquad \oplus g\left(1,];] \qquad \oplus g\left(1,]; \\ & = g\left(1,]; 1,] \qquad \oplus g\left(1,]; 1, 1, 1 \right) \right\right) \right) \right) \right) \right) \right)$$

We don't want some operators to appear with a negative sign and cancel other operators. Thus we redefine 'effective' coefficients

- $\tilde{\pi}(\Lambda')$ such that $\tilde{\pi}(\Lambda') = \pi(\Lambda')$ when the sign "makes sense". Otherwise $\tilde{\pi}(\Lambda') = 0$. Note that $\tilde{\pi}(\Lambda')$ is always either 0 or 1. See Appendix Section B for a full description of $\tilde{\pi}$.
- $\tilde{g}(2T, \Lambda'; K)$ is zero for the reps that get cancelled by the $\pi(\Lambda')$ which don't make sense. Note that $\tilde{g}(2T, \Lambda'; K) \leq g(2T, \Lambda'; K)$.

Thus we get

$$K = \bigoplus_{\Lambda} \dim V_{K,\Lambda} \ \Lambda = \bigoplus_{2T,\Lambda'} \tilde{g}(2T,\Lambda';K) \ \tilde{\pi}(\Lambda')$$
(22)

where everything appears with a positive sign.

So for example

$$\tilde{\pi}\left(\blacksquare\right) = 0 \tag{23}$$

and

$$\widetilde{g}\left(\Box, \Box; \Box\right) = 0$$
(24)

which gives

$$= \tilde{g}\left(1,];]) \tilde{\pi}\left(] \right) \oplus \tilde{g}\left(],];]) \tilde{\pi}\left(] \right) \oplus \tilde{g}\left(],];]) \tilde{\pi}\left(] \right)$$

$$= \tilde{\pi}\left(]) \oplus \tilde{\pi}\left(] \right)$$

$$= \bigcup$$

$$(25)$$

²Since K has ≤ 4 rows, so must anything that is used to build it using the LR rule, e.g. both 2T and Λ' .

Another example with a much more complicated cancellation

$$= \pi \left(\blacksquare \right) \oplus \pi \left(\blacksquare \right)$$
$$= \blacksquare \oplus -\blacksquare \oplus 0 \oplus 0 \oplus 0 \oplus \blacksquare \oplus 1$$
$$= \blacksquare \oplus 1$$
(26)

Dimensionally this works 10 = 9 + 1. In the effective description we would have

$$\tilde{\pi}\left(\blacksquare\right) = 0 \quad \text{and} \quad \tilde{\pi}\left(\blacksquare\right) = 0$$
(27)

2.4 Going backwards

Suppose on the other hand we are given k and Λ and we want to work out not only the GL(4) rep K but also the structure of the tensor K and how it contains the two invariant SO(4) tensors

$$\eta_{\mu_1\mu_2} \quad \text{and} \quad \epsilon_{\mu_1\mu_2\mu_3\mu_4} \tag{28}$$

This is extremely important because in the onshell case we want to apply the equations of motion whenever η appears.

The procedure is as follows:

- Take Λ and look up its inverses under the $\tilde{\pi}$ projection $\tilde{\pi}^{-1}(\Lambda) = {\Lambda'}$. These inverses are listed in Appendix Section B.1.
- Given a Λ' with k' boxes this defines a GL(4) tensor with no contractions η . Λ' may now contain ϵ 's.
- Next we need to add t contractions η to Λ' to make it up to a GL(4) Young diagram K with k = k' + 2t boxes. We do this by GL(4)-tensoring all even partitions 2T with 2t boxes and at most 4 rows with Λ' to get K, as long as the effective coupling is non-zero $\tilde{g}(2T, \Lambda'; K) \geq 1$.

For a given k and Λ this will give a list of GL(4) tensors K

$$\{K\} = \sum_{k'} \bigoplus_{\Lambda' \vdash k', 2T \vdash k - k'} \tilde{g}(2T, \Lambda'; K) \ \delta(\Lambda = \tilde{\pi}(\Lambda'))$$
⁽²⁹⁾

This list is entirely positive and contains no cancellations. Looking forward to the $SU(2)_L \times SU(2)_R$ section, $\Lambda_L \otimes \Lambda_R = \{K\}$ as defined here.

2.5 The explicit decomposed operator

We will now explicitly decompose the GL(4) tensor, separating the $t \eta$ contractions from the Λ' tensor that projects to Λ with $\tilde{\pi}$.

To do this we first want to effect for $W = V_4 \otimes V_H$

$$\operatorname{Sym}(W^{\otimes k}) \to V_{\mathbf{4}}^{\otimes 2t} \otimes V_{\mathbf{4}}^{\otimes k'} \otimes V_{H}^{\otimes 2t} \otimes V_{H}^{\otimes k'}$$
(30)

See Appendix Section C.3.

We get

$$|K, M_{K}, M_{K}', H, \Lambda', \tau\rangle = \sum_{M_{H}, M_{H}'} \sum_{M_{\Lambda'}, M_{\Lambda'}'} \sum_{a_{H}, a_{\Lambda'}} C^{\tau, M_{K}}_{M_{H}, M_{\Lambda'}} C^{\tau, M_{K}'}_{M_{H}, M_{\Lambda'}} C^{\mu_{1} \cdots \mu_{2t}}_{H, M_{H}, a_{H}} C^{\mu_{2t+1} \cdots \mu_{k}}_{\Lambda', M_{\Lambda'}, a_{\Lambda'}} C^{h_{1} \cdots h_{2t}}_{H, M_{H}, a_{H}} C^{h_{2t+1} \cdots h_{k}}_{\Lambda', M_{\Lambda'}, a_{\Lambda'}} A^{\dagger}_{h_{1}\mu_{1}} \cdots A^{\dagger}_{h_{k}\mu_{k}} |0\rangle$$
(31)

K is a k-box, 4-row rep with GL(4) state M_K and $GL(d_H)$ state M'_K . $H \in P(2t, 4)$ and $\Lambda' \in P(k', 4)$. τ runs over $g(H, \Lambda'; K)$ for the GL(4) tensor product $H \circ \Lambda' = \bigoplus_K g(H, \Lambda'; K) K$.

Now we will butcher this operator for the GL(4) to SO(4) decomposition, paying attention to the interplay between V_4 and V_H . We will

- Replace the $V_4^{\otimes 2t}$ tensor $C_{H,M_H,a_H}^{\mu_1\cdots\mu_{2t}}$ by $\eta^{\mu_1\mu_2}\cdots\eta^{\mu_{2t-1}\mu_{2t}}$. This removes the M_H multiplicity.
- This forces an $S_2^t \ltimes S_t$ symmetry on the corresponding $V_H^{\otimes 2t}$ tensor $C_{H,M'_H,a_H}^{h_1\cdots h_{2t}}$. This can be seen most simply if we define $S_{h_1h_2}^{\dagger} \equiv \eta^{\mu_1\mu_2} A_{h_1\mu_1}^{\dagger} A_{h_1\mu_1}^{\dagger}$ and we see that $C_{H,M'_H,a_H}^{h_1\cdots h_{2t}}$ is contracted with $S_{h_1h_2}^{\dagger} \cdots S_{h_{2t-1}h_{2t}}^{\dagger}$. As discussed below in Section 2.5.1 this symmetry forces H to have only even rows H = 2T. It also kills the a_{2T} multiplicity to leave just the M'_{2T} multiplicity.
- $\tilde{\tau}$ now runs over the effective multiplicity $\tilde{g}(2T, \Lambda'; K)$ instead of $g(2T, \Lambda'; K)$. Because K is a 4-row tensor, 2T and Λ' and their product can only have 4 rows.
- Λ' and its GL(4) state $M_{\Lambda'}$ project down to the SO(4) rep Λ and SO(4) state M_{Λ} with the projection $\tilde{\pi}$. We will write this $\tilde{\Pi}_{\Lambda,M_{\Lambda}}^{\Lambda',M_{\Lambda'}}$. There is no multiplicity here.

This results in an operator

$$|K, M'_{K}, 2T, \Lambda', \Lambda, M_{\Lambda}, \tilde{\tau} \rangle$$

$$= \sum_{a_{\Lambda'}} C^{\tilde{\tau}, M'_{K}}_{M'_{2T}, M'_{\Lambda'}} \tilde{\Pi}^{\Lambda', M_{\Lambda'}}_{\Lambda, M_{\Lambda}} C^{\mu_{2t+1} \cdots \mu_{k}}_{\Lambda', M_{\Lambda'}, a_{\Lambda'}} C^{h_{1} \cdots h_{2t}}_{2T, M'_{2T}} C^{h_{2t+1} \cdots h_{k}}_{\Lambda', M'_{\Lambda'}, a_{\Lambda'}} S^{\dagger}_{h_{1}h_{2}} \cdots S^{\dagger}_{h_{2t-1}h_{2t}} A^{\dagger}_{h_{2t+1}\mu_{2t+1}} \cdots A^{\dagger}_{h_{k}\mu_{k}} |0\rangle$$
(32)

To get the S_n rep λ we must further decompose the $GL(d_H)$ state M'_K of K along the lines of Section 2.2.

2.5.1 The $S_2^t \ltimes S_t$ reduction

A note on the coefficients $C_{2T,M'_{2T}}^{h_1h_2\cdots h_{2t}}$. We can first decompose the tensor product $V_H^{\otimes 2t}$ in the obvious way into irreps of $GL(V_H) \otimes S_{2t}$. This is done with coefficients:

$$C_{H,M'_{H},a_{H}}^{h_{1}\dots h_{2t}} \tag{33}$$

Now the symmetry conditions on the indices are invariance under $S_2^t \ltimes S_t$, i.e picking the trivial rep of this group which comes from $(\mathbf{1}, \mathbf{1})$ of S_2^t and S_t . The semi-direct product is a subgroup of S_{2t} . We can decompose the states (H, a_H) of S_{2t} into irreps of the semidirect product subgroup. We need to pick the trivial irrep. of this semi-direct product. So we have a branching coefficient

$$C_{H,a_H}^{(\mathbf{1},\mathbf{1})_{SD}} = \delta(H,2T) C_{2T,a_{2T}}^{(\mathbf{1},\mathbf{1})_{SD}}$$
(34)

In other words the branching coefficient is zero unless H = 2T. So we have a decomposition

$$C_{2T,M_{2T}'}^{h_1h_2\cdots h_{2t}} = C_{2T,M_{2T}',a_{2T}}^{h_1\cdots h_{2t}} C_{2T,a_{2T}}^{(\mathbf{1},\mathbf{1})_{SD}}$$
(35)

There is a counting check on the statement that the rep. of S_{2t} induced from the trivial of $S_2^t \ltimes S_t$ is the direct sum of even YD. The order of the semi-direct product group is $2^t t!$. The rep. induced from the trivial has dimension $\frac{(2t)!}{t!2^t}$. We have checked, in examples (as reported in the Appendix of note-EOM7.tex) that

$$\frac{(2t)!}{t!2^t} = \sum_{2T} d_{2T} \tag{36}$$

Note that the multiplicity of the rep. H of S_{2t} in the induction of the trivial of the subgroup $S_2^t \ltimes S_t$ is the same as the multiplicity of the trivial of the subgroup in the restriction of H to the subgroup. This induction-restriction duality is Frobenius duality.

The flip Schur-Weyl of this dimension formula is

$$\operatorname{Dim}_{\frac{d_H(d_H+1)}{2}}[t] = \sum_{2T \in P(2t)} \operatorname{Dim}_{d_H} 2T$$
(37)

2.6 SO(4) counting

For a given SO(4) rep Λ and dimension $\Delta = n + k$ we have using the final operator (32) and (29)

$$\operatorname{mult}(\Lambda, \Delta) = \sum_{K \in P(k,4)} \sum_{k'} \bigoplus_{\Lambda' \vdash k', 2T \vdash k - k'} \tilde{g}(2T, \Lambda'; K) \,\delta(\Lambda = \tilde{\pi}(\Lambda')) \operatorname{Dim}_{d_H} K$$
(38)

Refining to a specific S_n rep λ using Section 2.2 we get

$$\operatorname{mult}(\Lambda, \Delta, \lambda) = \sum_{K \in P(k,4)} \sum_{k'} \sum_{\Lambda' \vdash k', 2T \vdash k - k'} \tilde{g}(2T, \Lambda'; K) \,\delta(\Lambda = \tilde{\pi}(\Lambda')) \quad \operatorname{mult}(V_H^{\otimes k}, \lambda \otimes K) \tag{39}$$

We prove these formulae below using $SU(2)_L \times SU(2)_R$ language.

2.7 From SO(4) to $SU(2)_L \times SU(2)_R$

An alternative way of getting the list of GL(4) reps K from k and the SO(4) rep Λ is to take the inner product of the two corresponding $GL(2)_L \times GL(2)_R$ reps. This is more straightforward, but we lose the explicit decomposition of K into η 's and ϵ 's. This is because the two invariant tensors of $SU(2)_L \times SU(2)_R \epsilon^{\alpha_1 \alpha_2}$ and $\epsilon^{\dot{\alpha}_1 \dot{\alpha}_2}$ don't distinguish η from ϵ . The SO(4) tensors are expressed as

$$\eta^{\mu_1\mu_2}a_{i_1\mu_1}a_{i_2\mu_2} = \epsilon^{\alpha_1\alpha_2}\epsilon^{\alpha_1\alpha_2}a_{i_1\alpha_1\dot{\alpha}_1}a_{i_2\alpha_2\dot{\alpha}_2}$$

$$\epsilon^{\mu_1\mu_2\mu_3\mu_4}a_{i_1\mu_1}a_{i_2\mu_2}a_{i_3\mu_3}a_{i_4\mu_4} = \epsilon^{\alpha_1\alpha_2}\epsilon^{\dot{\alpha}_1\dot{\alpha}_3}\epsilon^{\alpha_3\alpha_4}\epsilon^{\dot{\alpha}_2\dot{\alpha}_4}a_{i_1\alpha_1\dot{\alpha}_1}a_{i_2\alpha_2\dot{\alpha}_2}a_{i_3\alpha_3\dot{\alpha}_3}a_{i_4\alpha_4\dot{\alpha}_4} \tag{40}$$

It is however much easier to understand the counting from a $SU(2)_L \times SU(2)_R$ perspective.

2.8 $SU(2)_L \times SU(2)_R$ offshell operator

For $SU(2)_L \times SU(2)_R$ we are organising

$$A^{\dagger}_{h_1\alpha_1\dot{\alpha}_1}\cdots A^{\dagger}_{h_k\alpha_k\dot{\alpha}_k}|0\rangle \tag{41}$$

We can organise the $SU(2)_L$ indices α_i with a $GL(2)_L$ rep $\Lambda_L = [t_L + 2j_L, t_L]$ and the $SU(2)_R$ indices $\dot{\alpha}_i$ with a $GL(2)_R$ rep $\Lambda_R = [t_R + 2j_R, t_R]$. These numbers satisfy $2t_L + 2j_L = 2t_L + 2j_L = k$ so that Λ_L and Λ_R both contain k boxes.

We proceed for the $GL(2)_L \times GL(2)_R$ tensors as for GL(4)

$$C^{\alpha_1\cdots\alpha_k}_{\Lambda_L,M_L,a_L} C^{\dot{\alpha}_1\cdots\dot{\alpha}_k}_{\Lambda_R,M_R,a_R} C^{h_1\cdots h_k}_{\lambda,a_\lambda,\kappa,a_\kappa,\tau} A^{\dagger}_{h_1\alpha_1\dot{\alpha}_1}\cdots A^{\dagger}_{h_k\alpha_k\dot{\alpha}_k}|0\rangle$$
(42)

The $A_{h_i\alpha_i\dot{\alpha}_i}^{\dagger}$ all commute, so the overall operator transforms in the trivial [k] of S_k . Thus we combine the free S_k indices of this operator with an S_k Clebsch-Gordan

$$\hat{\mathcal{O}}[\Lambda_L, M_L, \Lambda_R, M_R, \lambda, a_\lambda, \{\tau, \kappa, \hat{\tau}\}] = C^{\Lambda_L, a_L; \Lambda_R, a_R; \kappa, a_\kappa}_{[k], \hat{\tau}} C^{\alpha_1 \cdots \alpha_k}_{\Lambda_L, M_L, a_L} C^{\dot{\alpha}_1 \cdots \dot{\alpha}_k}_{\Lambda_R, M_R, a_R} C^{h_1 \cdots h_k}_{\lambda, a_\lambda, \kappa, a_\kappa, \tau} A^{\dagger}_{h_1 \alpha_1 \dot{\alpha}_1} \cdots A^{\dagger}_{h_k \alpha_k \dot{\alpha}_k} |0\rangle$$
(43)

 $\hat{\tau}$ labels the multiplicity of [k] in the S_k tensor product $\Lambda_L \otimes \Lambda_R \otimes \kappa$, or alternatively the number of times κ appears in the S_k tensor product

$$\Lambda_L \otimes \Lambda_R = \sum_{\kappa} C(\Lambda_L, \Lambda_R, \kappa) \ \kappa \tag{44}$$

It is a rule from [1] that the inner product of two two-row reps gives reps with at most four rows. Thus κ has at most 4 rows.

2.8.1 GL(4) as a $GL(2)_L \times GL(2)_R$ product

We can of course convert between $GL(2)_L \times GL(2)_R$ and GL(4), noticing that $2 \times 2 = 4$.

Applying this to the tensor products we see that the 4-row κ in equation (44) is identified with the GL(4) rep K.

Thus to get K from k and Λ , we find the corresponding $GL(2)_L \times GL(2)_R$ reps Λ_L and Λ_R and take their inner product.

2.9 Offshell counting

We focus on the question:

• Given an SO(2,4) rep $(\Delta = n + k, j_L, j_R)$ and an S_n rep λ , how many HWSs are there?

This is most easily answered from the $SU(2)_L \times SU(2)_R$ point of view. Considering the operator (43), we just sum over the $\{\tau, K, \hat{\tau}\}$ multiplicity labels

$$\operatorname{mult}(\Delta, j_L, j_R, \lambda) = \sum_{K \vdash k} C(\Lambda_L, \Lambda_R, K) \ \operatorname{mult}(V_H^{\otimes k}, \lambda \otimes K)$$
(45)

where $\hat{\tau}$ runs over the $C(\Lambda_L, \Lambda_R, K)$ times K appears in $\Lambda_L \otimes \Lambda_R$ and τ runs over the mult $(V_H^{\otimes k}, \lambda \otimes K)$ times $\lambda \otimes K$ appears in $V_H^{\otimes k}$.

More readably we could write this

$$\operatorname{mult}(\Delta, j_L, j_R, \lambda) = \operatorname{number of times} \lambda \text{ appears in } [\Lambda_L \otimes \Lambda_R] (V_H^{\otimes k})$$
(46)

Given the relation between the inner product and SO(4) tensors we can also write this in SO(4) language

$$\operatorname{mult}(\Delta, \Lambda, \lambda) = \sum_{k'} \sum_{\Lambda' \vdash k'} \delta(\Lambda = \tilde{\pi}(\Lambda')) \text{ number of times } \lambda \text{ appears in } \left[\left[\frac{k-k'}{2} \right] \left(\Box^{\circ} \frac{k-k'}{2} \right) \circ_4 \Lambda' \right] (V_H^{\otimes k}) \tag{47}$$

$$= \sum_{k'} \sum_{\Lambda' \vdash k'} \sum_{2T \vdash k-k'} \sum_{K \vdash k} \delta(\Lambda = \tilde{\pi}(\Lambda')) \ \tilde{g}(2T, \Lambda'; K) \operatorname{mult}(V_H^{\otimes k}, \lambda \otimes K)$$

$$(48)$$

where 2T are even partitions; we remember that the tensor products \circ_4 and \tilde{g} only allow K with 4 rows; it is also only an effective tensor product.

2.10 Offshell character expansion and proof of counting

Below we will focus on doing the decomposition (1) in terms of SO(2,4) characters. If $\chi_F(s,x,y)$ is the character of V_F then

$$\left[\chi_F(s,x,y)\right]^n = \sum_{\Delta,j_L,j_R} \sum_{\lambda \vdash n} \operatorname{mult}(\Delta,j_L,j_R,\lambda) \ d_\lambda \ \chi_{\Delta,j_L,j_R}(s,x,y)$$
(49)

The offshell character of V_F , all the descendants of X, is

$$\chi_F(s, x, y) = \chi_{1,0,0} = Ps \tag{50}$$

P accounts for all the descendants with derivatives

$$P = \frac{1}{(1 - sxy)(1 - sx^{-1}y)(1 - sxy^{-1})(1 - sx^{-1}y^{-1})}$$
(51)

For a general SO(2,4) irrep

$$\chi_{\Delta,j_L,j_R}(s,x,y) = P s^{\Delta} \chi_{j_L}(X) \chi_{j_R}(Y)$$
(52)

where $\Delta = n + k$, where k is the number of derivatives for the highest weight, and $X = \text{diag}(x, x^{-1}) \in SU(2)$. Since X is in SU(2) we can remove columns of length two when we work out the character, e.g.

$$\chi_{\square}(X) = \chi_{\square}(X) \tag{53}$$

As we worked out previously in Section 7 of sl2diag.dvi and Section 2 of note-EOM.dvi by expanding P^{n-1} in terms of V_H

$$\chi_{F}^{n} = [Ps]^{n}$$

$$= Ps^{n} \sum_{k=0}^{\infty} s^{k} \sum_{\Lambda_{L},\Lambda_{R},\Lambda_{2} \vdash k} \sum_{\lambda \vdash n} d_{\lambda} \operatorname{mult}(V_{H}^{\otimes k}, \lambda \otimes \Lambda_{2}) C(\Lambda_{L}, \Lambda_{R}, \Lambda_{2}) \chi_{\Lambda_{L}}(X) \chi_{\Lambda_{R}}(Y)$$

$$= Ps^{n} \sum_{k,j_{L},j_{R}=0}^{\infty} s^{k} \chi_{j_{L}}(X) \chi_{j_{R}}(Y) \sum_{\lambda \vdash n} d_{\lambda}$$

$$\sum_{\Lambda_{2} \vdash k} \operatorname{mult}(V_{H}^{\otimes k}, \lambda \otimes \Lambda_{2}) C\left(\Lambda_{L} = \left[\frac{k}{2} + j_{L}, \frac{k}{2} - j_{L}\right], \Lambda_{R} = \left[\frac{k}{2} + j_{R}, \frac{k}{2} - j_{R}\right], \Lambda_{2}\right)$$
(54)

To make life simpler write $\Lambda_L = \{k, j_L\}$ for the SU(2) 2-row Young diagram with k boxes corresponding to the spin j_L rep.

$$\Lambda_L = \left[\frac{k}{2} + j_L, \frac{k}{2} - j_L\right] \equiv \{k, j_L\} \sim [2j_L] \tag{55}$$

where $[2j_L]$ is the single-row Young diagram with $2j_L$ boxes, corresponding to the spin j_L rep.

This result matches with our goal (49)

$$\operatorname{mult}(\Delta = n + k, j_L, j_R, \lambda) = \sum_{\Lambda_2 \vdash k} \operatorname{mult}(V_H^{\otimes k}, \lambda \otimes \Lambda_2) \ C\left(\Lambda_L = \{k, j_L\}, \Lambda_R = \{k, j_R\}, \Lambda_2\right)$$
(56)

To get the overall multiplicity of the SO(2,4), ignoring the S_n rep, we sum over the $\lambda \vdash n$,

$$\operatorname{mult}(\Delta = n + k, j_L, j_R) = \sum_{\lambda \vdash n} d_{\lambda} \operatorname{mult}(\Delta = n + k, j_L, j_R, \lambda)$$
$$= \sum_{\Lambda_2 \vdash k} \dim_{n-1} \Lambda_2 \ C(\Lambda_L = \{k, j_L\}, \Lambda_R = \{k, j_R\}, \Lambda_2)$$
(57)

3 Examples for the offshell case

3.1**Scalar:** $j_L = j_R = 0$

Given k and $j_L = j_R = 0$ we want to find the GL(4) reps K.

Following the prescription in Section 2.3 the SO(4) rep is $\Lambda = [0]$. Taking the inverse of the π projection from equation (148) in Appendix Section A.1 we get

$$\pi^{-1}([0]) = \{\Lambda'\} = \{[0], [1^4]\}$$
(58)

Next we add the contractions to get a 4-row K with k boxes.

For $\Lambda' = [0]$, k' = 0 and the number of contractions is $t = \frac{k}{2}$. Thus the reps K come from a GL(4) tensor product of [0] with even reps with k = 2t boxes $K = 2T \vdash k$.

 $\Lambda' = [1^4]$ corresponds to a single ϵ tensor. k' = 4 and the number of contractions is $t = \frac{k-4}{2}$. The reps K come from a GL(4) tensor product of $[1^4]$ with even reps with k-4 boxes $K = [1^4] \circ (2T \vdash k-4)$.

We find exactly the same expansion of GL(4) reps K by taking the inner product of the two corresponding GL(2) reps:

$$\Lambda_L \otimes \Lambda_R = \left[\frac{k}{2}, \frac{k}{2}\right] \otimes \left[\frac{k}{2}, \frac{k}{2}\right] = \left[\left[\frac{k}{2}\right]\left(\square^{\circ\frac{k}{2}}\right) + \left[\square^{\circ\frac{k-4}{2}}\right]\left(\square^{\circ\frac{k-4}{2}}\right)\right]_{\leq 4} = \sum K$$

$$\tag{59}$$

 $|\cdot|_{<4}$ means only keep K if K has 4 or fewer rows, i.e. we are implementing the GL(4) tensor product \circ_4 . \otimes is the S_k inner product.

***This isn't proved, but true up to k = 12. NB: this observation first brought up by Paul in Mathematica file for k = 6. Should be able to prove using this paper on the inner product of two-row reps: [1].

This splits into Young diagrams with even and odd row lengths. If we write each diagram in terms of all 4 row lengths, e.g. [3, 1, 0, 0] for [3, 1], then K runs over all Young diagrams of size k with differences between the rows always even ([3, 1, 0, 0] fails this test).

***Clarify this.

That the LHS of (59) gives the correct offshell counting is proved above.

Following Section 2.5 the operators corresponding to (59) are

$$C_{M_{2T}'}^{M_{K}'} C_{2T,M_{2T}'}^{h_{1}\dots h_{2t}} S_{h_{1}h_{2}}^{\dagger} \cdots S_{h_{2t-1}h_{2t}}^{\dagger} |0\rangle \\C_{M_{2T}',M_{14}'}^{\tilde{\tau},M_{K}'} \tilde{\Pi}_{[0]}^{[1^{4}],M_{[1^{4}]}} C_{[1^{4}],M_{[1^{4}]}}^{\mu_{2t+1}\dots\mu_{k}} C_{2T,M_{2T}'}^{h_{1}\dots h_{2t}} C_{[1^{4}],M_{[1^{4}]}}^{h_{2t+1}\dots h_{k}} S_{h_{1}h_{2}}^{\dagger} \cdots S_{h_{2t-1}h_{2t}}^{\dagger} A_{h_{2t+1}\mu_{2t+1}}^{\dagger} \cdots A_{h_{k}\mu_{k}}^{\dagger} |0\rangle$$

$$(60)$$

This covers all independent cases where all indices are contracted and the SO(4) state is trivial. Since $K \in P(k, 4)$ this restricts the number of rows in 2T.

3.1.1 Explicit examples

For k = 2 only $\Lambda' = [0]$ applies and we just get

$$K = \square \otimes \square = \square \tag{61}$$

For k = 4 we also get a contribution from $\Lambda' = [1^4]$ too

$$\sum K = \bigoplus \otimes \bigoplus = \bigoplus (\bigoplus^{\circ 2}) + \bigsqcup$$
$$= \bigoplus + \bigoplus + \bigsqcup$$
 (62)

For k = 6

$$\sum K = \bigoplus \otimes \bigoplus = \left[(\square^{\circ 3}) + \left[\circ \square \right]_{\leq 4} \right]$$
$$= \square \square + \bigoplus + \left[\square + \left[\square^{\circ 3} \right]_{\leq 4} \right]$$
$$= \square (\square^{\circ 3}) + \left[\circ \square - \left[\square^{\circ 3} \right]_{\leq 4} \right]$$
(63)

In the final line we have rewritten it as a generic $GL(\infty)$ tensor product or general symmetric group outer product, but subtracting the reps with more than 4 rows. This will be useful when we count the onshell operators.

For k = 8

$$\sum K = \underbrace{\qquad} \otimes \underbrace{\qquad} = \left[\underbrace{\qquad} (\boxdot^{\circ 4}) + \underbrace{\qquad} \circ \boxdot^{\circ 2} \right]_{\leq 4}$$
$$= \underbrace{\qquad} + \underbrace{\qquad$$

For k = 10

$$\sum K = \underbrace{\blacksquare} \otimes \underbrace{\blacksquare} = \left[\underbrace{\blacksquare} (\boxdot^{\circ 5}) + \underbrace{\blacksquare} \circ \boxdot^{\circ 3}) \right]_{\leq 4}$$

$$= \underbrace{\blacksquare} + \underbrace$$

For k = 12For the offshell case

3.2 $j_L - j_R = 0$

Given k and $j_L = j_R = j$ we want to find the GL(4) reps K.

Following the prescription in Section 2.3 the SO(4) rep is $\Lambda = [2j]$. Taking the inverse of the π projection from equation (149) in Appendix Section A.1 we get

$$\pi^{-1}([2j]) = \{\Lambda'\} = \{[2j], [2j, 1, 1], -[2j, 2, 1, 1], -[2j, 2, 2, 2]\}$$
(67)

The first two here make sense since

$$= \sim \Box \sim \epsilon^{\mu_1 \mu_2 \mu_3 \mu_4} A^{\dagger}_{[h_2 \mu_2} A^{\dagger}_{h_3 \mu_3} A^{\dagger}_{h_4] \mu_4}$$
 (68)

Note that the last two appear for $j \ge 1$ and appear with a minus sign.

Next we add the contractions to get a 4-row K with k boxes. For $\Lambda' = [2j]$, k' = 2j and the number of contractions is $t = \frac{k-2j}{2}$. For $\Lambda' = [2j, 1, 1]$, k' = 2j + 2 and the number of contractions is $t = \frac{k-2j-2}{2}$. For $\Lambda' = -[2j, 2, 1, 1]$, k' = 2j + 4 and the number of contractions is $t = \frac{k-2j-4}{2}$. For $\Lambda' = -[2j, 2, 2, 2]$, k' = 2j + 6 and the number of contractions is $t = \frac{k-2j-4}{2}$.

3.2.1
$$j_L = j_R = \frac{1}{2}$$

k = 1 is trivial.

For k = 3 we get

$$\sum K = \Lambda_L \otimes \Lambda_R = \bigoplus \otimes \bigoplus = \Box \circ \Box + \bigoplus$$
$$= \Box \Box + \bigoplus + \bigoplus$$
(69)

For k = 5 we get

3.2.2 $j_L = j_R = 1$

k = 2 is trivial. For k = 4 we get

For k = 6 we get

$$\sum K = \Lambda_L \otimes \Lambda_R = \blacksquare \otimes \blacksquare = \blacksquare \circ \blacksquare (\blacksquare^{\circ 2}) + \blacksquare \circ \blacksquare - \blacksquare$$
$$= \blacksquare \blacksquare + \blacksquare \blacksquare + \blacksquare \blacksquare + \blacksquare = \blacksquare + \blacksquare = \blacksquare (\blacksquare^{\circ 2}) + \blacksquare = \blacksquare (\blacksquare^{\bullet 2}) + \blacksquare = \blacksquare (\blacksquare^{\bullet 2}) + \blacksquare = \blacksquare (\blacksquare^{\bullet 2}) + \blacksquare = \blacksquare = \blacksquare (\blacksquare^{\bullet 2}) + \blacksquare = \blacksquare = \blacksquare (\blacksquare^{\bullet 2}) + \blacksquare = \blacksquare = \blacksquare$$

This is the first time a Λ' appears with a minus sign; it cancels the appearance of \square in $\square \circ \square$. For k = 8 we get

$$\sum K = \Lambda_L \otimes \Lambda_R = \blacksquare \otimes \blacksquare \otimes \blacksquare = \blacksquare \circ \blacksquare (\square^{\circ 3}) + \blacksquare \circ \blacksquare (\square^{\circ 2}) - \blacksquare \circ \blacksquare - \blacksquare$$
(73)

I've checked this explicitly, but it's too tedious to write out.

3.2.3 $j_L = j_R = \frac{3}{2}$

k = 3 is trivial.

For k = 5 we get

$$\sum K = \Lambda_L \otimes \Lambda_R = \blacksquare \blacksquare \otimes \blacksquare \blacksquare = \blacksquare \circ \blacksquare + \blacksquare = \blacksquare = \blacksquare \circ \blacksquare + \blacksquare \blacksquare$$
$$= \blacksquare \blacksquare \blacksquare + \blacksquare \blacksquare + \blacksquare \blacksquare + \blacksquare \blacksquare = \blacksquare$$
(74)

 $j_L - j_R = 1$ 3.3

Given k and $j_L = j_R + 1$ we want to find the GL(4) reps K.

Following the prescription in Section 2.3 the SO(4) rep is $\Lambda = [2j_R + 1, 1]$. Taking the inverse of the π projection from equation (150) in Appendix Section A.1 we get

$$\pi^{-1}([2j_R+1,1]) = \{\Lambda'\} = \{[2j_R+1,1], -[2j_R+1,2,2,1]\}$$
(75)

Next we add the contractions to get a 4-row K with k boxes.

For $\Lambda' = [2j_R + 1, 1]$, $k' = 2j_R + 2$ and the number of contractions is $t = \frac{k-2j_R-2}{2}$. For $\Lambda' = -[2j_R + 1, 2, 2, 1]$, $k' = 2j_R + 6$ and the number of contractions is $t = \frac{k-2j_R-6}{2}$. This is only a legal diagram for $j_R \ge \frac{1}{2}$.

3.3.1
$$j_L = 1, j_R = 0$$

 $\Lambda = [1, 1].$ k = 2 is trivial. For k = 4 we get

$$\sum K = \Lambda_L \otimes \Lambda_R = \blacksquare \otimes \blacksquare = \blacksquare \circ \blacksquare$$
$$= \blacksquare + \blacksquare \qquad (76)$$

For k = 6 we get

$$\sum K = \Lambda_L \otimes \Lambda_R = \blacksquare \otimes \blacksquare = \Box \circ \blacksquare (\Box^{\circ 2})$$
(77)

3.3.2 $j_L = \frac{3}{2}, j_R = \frac{1}{2}$

 $\Lambda = [2, 1].$

k = 3 is trivial.

For k = 5 we get

$$\sum K = \Lambda_L \otimes \Lambda_R = \blacksquare \otimes \blacksquare = \blacksquare \circ \blacksquare$$
$$= \blacksquare \Box = \blacksquare + \blacksquare + \blacksquare + \blacksquare \qquad (78)$$

For k = 7 we get a contribution from $\Lambda' = [2, 2, 2, 1]$ which has to appear with a minus sign to gel with the inner product

$$\sum K = \Lambda_L \otimes \Lambda_R = \blacksquare \otimes \blacksquare \otimes \blacksquare = \blacksquare \circ \blacksquare (\blacksquare^{\circ 2}) - \blacksquare$$
(79)

This is another example of the important of the minus sign.

3.3.3 $j_L = 2, j_R = 1$ $\Lambda = [3, 1].$ k = 4 is trivial.

For k = 6 we get

For k = 8 we get a contribution from $\Lambda' = [3, 2, 2, 1]$ which has to appear with a minus sign to gel with the inner product

$$\sum K = \Lambda_L \otimes \Lambda_R = \blacksquare \otimes \blacksquare \otimes \blacksquare = \blacksquare \circ \blacksquare (\blacksquare \circ^2) - \blacksquare$$
(81)

3.4 $j_L - j_R = 2$

Following the prescription in Section 2.3 the SO(4) rep is $\Lambda = [2j_R + 2, 2]$. Taking the inverse of the π projection from equation (151) in Appendix Section A.1 we get

$$\pi^{-1}([2j_R+2,2]) = \{\Lambda'\} = \{[2j_R+2,2], -[2j_R+2,2,2]\}$$
(82)

3.4.1 $j_L = 2, j_R = 0$

For k = 4 this is trivial

$$\sum K = \blacksquare \otimes \blacksquare = \blacksquare \tag{83}$$

For k = 6 we get a non-trivial contribution with a minus sign

$$\sum K = \blacksquare \otimes \blacksquare = \blacksquare \circ \blacksquare - \blacksquare = \blacksquare \circ \blacksquare - \blacksquare = \blacksquare \circ \blacksquare + \blacksquare$$

$$(84)$$

3.5 $j_L - j_R = 3$

Following the prescription in Section 2.3 the SO(4) rep is $\Lambda = [2j_R + 3, 3]$. Taking the inverse of the π projection from equation (152) in Appendix Section A.1 we get

$$\pi^{-1}([2j_R+3,3]) = \{\Lambda'\} = \{[2j_R+3,3], -[2j_R+3,3,2], [2j_R+3,3,3,1], -[2j_R+3,3,3,3]\}$$
(85)

3.5.1 $j_L = 3, j_R = 0$

For k = 6 this is trivial

$$\sum K = \blacksquare \bigotimes \blacksquare = \blacksquare$$
(86)

For k = 8

4 The onshell case

4.1 The onshell operator

We want to remove the equations of motion for individual fields $\partial^{\mu}\partial_{\mu}X = 0$, i.e. when two $a_{i\mu}^{\dagger}$ act on the same place labelled by *i* and have their SO(4) indices contracted by η

$$\eta^{\mu_1\mu_2}a^{\dagger}_{i\mu_1}a^{\dagger}_{i\mu_2} \tag{90}$$

There is no summation over i. It is clear that we must work in the SO(4) formalism to do this.

For our HWS consider the contraction of two hooks $V_{\cal H}$

$$\eta^{\mu_1\mu_2} A^{\dagger}_{h_1\mu_1} A^{\dagger}_{h_2\mu_2} \tag{91}$$

Because η is symmetric, as a representation of S_n this transforms in $\Box (V_H^{\circ 2}) = V_{\text{nat}} \oplus V_{[n-2,2]}$. To apply the EoM we just remove the diagonal V_{nat} (which corresponds to when $\partial^{\mu}\partial_{\mu}$ are acting on the same site) from $\Box (V_H^{\circ 2})$ to get $V_B \equiv V_{[n-2,2]}$. Thus whenever we contract two hooks, we must project to V_B

$$\eta^{\mu_1\mu_2}A^{\dagger}_{h_1\mu_1}A^{\dagger}_{h_2\mu_2} \to B^{\dagger}_{h_1h_2} \equiv P^{h'_1h'_2}_{h_1h_2}S^{\dagger}_{h'_1h'_2} = P^{h'_1h'_2}_{h_1h_2}\eta^{\mu_1\mu_2}A^{\dagger}_{h'_1\mu_1}A^{\dagger}_{h'_2\mu_2} \tag{92}$$

There is more detail on this projection in note-EOM. If we feed this projected contraction into the offshell operator (32) we find

$$\left| K, \tilde{M}'_{K}, 2T, \Lambda', \Lambda, M_{\Lambda}, \tilde{\tau} \right\rangle = \sum_{a_{\Lambda'}} C^{\tilde{\tau}, \tilde{M}'_{K}}_{\tilde{M}'_{2T}, M'_{\Lambda'}} \tilde{\Pi}^{\Lambda', M_{\Lambda'}}_{\Lambda, M_{\Lambda}} C^{\mu_{2t+1} \cdots \mu_{k}}_{\Lambda', M_{\Lambda'}, a_{\Lambda'}} C^{h_{1} \cdots h_{2t}}_{2T, \tilde{M}'_{2T}} C^{h_{2t+1} \cdots h_{k}}_{\Lambda', M'_{\Lambda'}, a_{\Lambda'}} B^{\dagger}_{h_{1}h_{2}} \cdots B^{\dagger}_{h_{2t-1}h_{2t}} A^{\dagger}_{h_{2t+1}\mu_{2t+1}} \cdots A^{\dagger}_{h_{k}\mu_{k}} |0\rangle$$
(93)

It's important to note that we've had to modify the $GL(d_H)$ state to \tilde{M}'_{2T} of 2T to account for the fact that we've projected out the equation of motion terms. It's not clear that this really corresponds to a $GL(d_H)$ rep anymore.

A $GL(d_H)$ description of $Sym(V_B^{\otimes t})$ is useful to get one description of the counting but not essential. As explained in more detail in symvb.tex we have

$$Sym(V_B^{\otimes t}) = \bigoplus_{2T,\lambda_2} V_{2T,\phi} \otimes V_{\lambda_2} \otimes V_{2T,\lambda_2}$$
(94)

 $V_{2T,\phi}$ is a 1-dimensional space corresponding to the even rep. 2T of S_{2t} which transforms as the trivial of the $S_2^t \ltimes S_t$ subgroup. The existence of the decomposition 94 is also useful for replacing $C_{2T,\tilde{M}'_{2T}}^{h_1\cdots h_{2t}}$ which manifestly makes sense. We replace it with $C_{2T,\lambda_2,a_{\lambda_2},\tau_{2T,\lambda_2}}^{h_1\cdots h_{2t}}$. The state τ_{2T,λ_2} runs over $\dim V_{2T,\lambda_2}$. We can also decompose the $GL(d_H)$ state $M'_{\Lambda'}$ into S_n states :

$$V_{\Lambda'}^{(GL(d_H))} = \bigoplus_{\lambda_3} V_{(S_n)}^{\lambda_3} \otimes V_{\Lambda'}^{\lambda_3}$$
(95)

with a multiplicity label $\tau_{\Lambda',\lambda_3}$ running over $DimV_{\Lambda'}^{\lambda_3}$. So we will have the corresponding Clebsch $C_{\lambda_3,a_{\lambda_3},\tau_{\Lambda',\lambda_3}}^{\Lambda',M'_{\Lambda'}}$. We can couple the resulting S_n state a_{λ_3} with the state a_{λ_2} with an S_n inner Clebsch $C_{4(2T,\Lambda');\lambda,a_{\lambda}}^{\lambda_3,\lambda_2,a_{\lambda_3},\tau_{\Lambda',\lambda_3}}$. We can couple the resulting S_n state a_{λ_3} with the state a_{λ_2} with an S_n inner Clebsch $C_{4(2T,\Lambda');\lambda,a_{\lambda}}^{\lambda_3,\lambda_2,a_{\lambda_3},\tau_{\Lambda',\lambda_3}}$. The subscript $4(2T,\Lambda')$ indicates that S_n reps coming from Λ' and S_n reps which were coupled to 2T are coupled to only the λ which are constrained to by the requirement that $2T \otimes \Lambda'$ does not have more than 4 rows.

The formula gets longer, but teh steps are simple :

$$\begin{aligned} &|\lambda(S_n), \lambda_2(S_n), \lambda_3(S_n), \tau_{2T,\lambda_2}, \tau_{\Lambda',\lambda_2}, 2T(S_{2t}), \Lambda', \Lambda(so(4)), M_\Lambda \rangle \\ &= C_{4(2T,\Lambda');\lambda,a_\lambda}^{\lambda_3,\lambda_2,a_{\lambda_3},a_{\lambda_3},\tau_{\Lambda',\lambda_3}} \tilde{\Pi}_{\Lambda,M_\Lambda}^{\Lambda',M_{\Lambda'}} C_{2T,\lambda_2,a_{\lambda_2},\tau_{2T,\lambda_2}}^{h_1\dots h_{2t}} C_{\Lambda',M_{\Lambda'},a_{\Lambda'}}^{\mu_{2t+1}\dots \mu_k} C_{\Lambda',M_{\Lambda'},a_{\Lambda'}}^{h_{2t+1}\dots h_k} \\ &B_{h_1h_2}^{\dagger} \cdots B_{h_{2t-1}h_{2t}}^{\dagger} A_{h_{2t+1}\mu_{2t+1}}^{\dagger} \cdots A_{h_k\mu_k}^{\dagger} |0\rangle \end{aligned}$$

$$\tag{96}$$

In the above ket, we have made explicit what group the rep. label belongs to, so the formula is easier to read. The label same Λ' is used for $GL(4), GL(d_H), S_{k'}$, which is due to Schur-Weyl duality and $S_{k'}$ symmetry, which is explained in more detail in section C.2. All repeated state-label indices are summed. Where do the GL(4) cutoffs appear in the above formula ? Λ' is a GL(4) label, also shared by other groups, so it imposes GL(4) cutoffs. Compared to 93 the updated 96 has lost the $GL(d_H)$ -Clebsch $C_{\tilde{M}'_{2T},M'_{\Lambda'}}^{\tilde{\tau},\tilde{M}'_{K}}$. When we had $GL(d_H)$ states in the off-shell case, it was easy to state how the GL(4) cutoff acts. It is clear we still need a GL(4) cutoff, but now it has to constrain the S_n tensor product. (the need for this cutoff can be seen in the k = 6example).

Exercise 1: Can we try and write a formula for $C_{4;\lambda,a_{\lambda}}^{\lambda_{3},\lambda_{2},a_{\lambda_{2}},a_{\lambda_{3}}}$ which makes a little clearer how the 4-cutoff operates. The words describing it above are probably enough to see how it works in examples such as the k = 6 below, but a neat general formula would be good.

Exercise 2: That should allow us to write a counting formula which is built as a sum of products of manifestly positive multiplicities, but equal to the alternating sum formulae.

4.2 SO(4) onshell counting

To account for the loss of these terms in the counting we need to proceed carefully.

In the offshell case for the η contractions we had

$$\operatorname{Sym}(\operatorname{Sym}(V_H^{\circ 2})^{\circ t}) = [t](\bigsqcup(V_H^{\circ 2})^{\circ t}) = \sum_{2T \in P(2t)} 2T(V_H^{\circ 2t})$$
(97)

By expanding into even Young diagrams with V_H indices we could easily see the GL(4) contraint. Here we have

$$\operatorname{Sym}(V_B^{\circ t}) \tag{98}$$

How do we translate into V_H indices so we can see the GL(4) contraints?

Comment : The dual of GL(4) is S_k on $W^{\otimes k}$. On $W_1^{\otimes 2t} \otimes W_2^{\otimes k'}$ it is $S_{2t} \times S_{k'}$. As we see in sections C.2 and C.3, we expect the GL(4) cutoff to always be expressed in terms of its duals. A $GL(d_H)$ presentation is possible as follows, but should not be essential.

The answer is to write $V_B = \Box (V_H^{\circ 2}) - V_{\text{nat}}$ and perform the alternating expansion

$$[t](V_B^{\circ t}) = [t] \left((\Box (V_H^{\circ 2}) - V_{\text{nat}})^{\circ t} \right)$$

$$= \sum_{p=0}^t (-1)^p [1^p] (V_{\text{nat}}^{\circ p}) \circ [t-p] \left((\Box (V_H^{\circ 2}))^{\circ t-p} \right)$$

$$= \sum_{p=0}^t \sum_{2T \in P(2t-2p)} (-1)^p [1^p] (V_{\text{nat}}^{\circ p}) \circ 2T (V_H^{\circ 2t-2p})$$
(99)

For example t = 3

$$= ((\Box (V_H^{\circ 2}))^{\circ 3}) - V_{\text{nat}} \circ \Box ((\Box (V_H^{\circ 2}))^{\circ 2}) + \Box (V_{\text{nat}}^{\circ 2}) \circ \Box (V_H^{\circ 2}) - \Box (V_{\text{nat}}^{\circ 3})$$
$$= (\Box \Box \Box + \Box \Box + \Box \Box) (V_H^{\circ 6}) - V_{\text{nat}} \circ (\Box \Box + \Box) (V_H^{\circ 4}) + \Box (V_{\text{nat}}^{\circ 2}) \circ \Box (V_H^{\circ 2}) - \Box (V_{\text{nat}}^{\circ 3})$$
(100)

So to apply the GL(4) constraint properly here, whenever we tensor $2T(V_H^{\circ 2t-2p})$ with $\Lambda'(V_H^{\circ k'})$ we must restrict the result $K \vdash k - 2p$ to 4 rows.

For a given SO(4) rep Λ and dimension $\Delta = n + k$ the counting inherits the alternating sum (cf. the offshell formula (38))

$$\operatorname{mult}_{\operatorname{EoM}}(\Lambda, \Delta) = \sum_{p=0}^{\iota} (-1)^p \sum_{K \in P(k-2p,4)} \sum_{k'} \sum_{\Lambda' \vdash k', 2T \vdash k-k'-2p} \tilde{g}(2T, \Lambda'; K) \,\delta(\Lambda = \tilde{\pi}(\Lambda')) \operatorname{Dim}_{d_{\operatorname{nat}}}[1^p] \operatorname{Dim}_{d_H} K$$

$$(101)$$

Refining to a specific S_n rep λ (cf. offshell version (39)) we must expand out

$$[1^p](V_{\text{nat}}^{\circ p}) \otimes K(V_H^{\circ k-2p}) \tag{102}$$

into S_n reps. This is done in detail below.

We prove these formulae below using the $SU(2)_L \times SU(2)_R$ character expansion.

4.3 Onshell character expansion

For the character of V_F we must now apply the EoM and remove terms like $\partial_{\mu}\partial^{\mu}X$ from V_F . This gives a character

$$\chi_F = \chi_{1,0,0} = P(1 - s^2)s \tag{103}$$

For $n \geq 3$ the characters are not modified from the off-shell case

$$\chi_{\Delta,j_L,j_R} = P s^{\Delta} \chi_{j_L}(X) \chi_{j_R}(Y) \tag{104}$$

***What was the story with n = 2?

Expanding the character for $V_F^{\otimes n}$

$$\chi_{F}^{n} = \left[P(1-s^{2})s\right]^{n}$$

$$= P(1-s^{2})^{n}s^{n}\sum_{q=0}^{\infty}s^{q}\sum_{\Lambda_{L},\Lambda_{R},\Lambda_{2}\vdash q}\sum_{\lambda_{1}\vdash n}d_{\lambda_{1}}\operatorname{mult}(V_{H}^{\otimes q},\lambda_{1}\otimes\Lambda_{2})C(\Lambda_{L},\Lambda_{R},\Lambda_{2})\chi_{\Lambda_{L}}(X)\chi_{\Lambda_{R}}(Y)$$

$$= Ps^{n}\sum_{p=0}^{n}(-1)^{p}s^{2p}\binom{n}{p}\sum_{q=0}^{\infty}s^{q}\sum_{\Lambda_{L},\Lambda_{R},\Lambda_{2}\vdash q}\sum_{\lambda_{1}\vdash n}d_{\lambda_{1}}\operatorname{mult}(V_{H}^{\otimes q},\lambda_{1}\otimes\Lambda_{2})C(\Lambda_{L},\Lambda_{R},\Lambda_{2})\chi_{\Lambda_{L}}(X)\chi_{\Lambda_{R}}(Y) \quad (105)$$

Now make the crucial step of identifying the binomial coefficient with the antisymmetric product of V_{nat} 's that appears in the expansion of V_B in (99)

$$\binom{n}{p} = \dim \left[1^p\right](V_{\text{nat}}^{\circ p}) \tag{106}$$

Collect powers of s^k where k = 2p + q

$$Ps^{n}\sum_{k=0}^{\infty}s^{k}\sum_{p=0}^{n}(-1)^{p}d_{[\operatorname{anti}\operatorname{nat}^{\otimes p}]}\sum_{\Lambda_{L},\Lambda_{R},\Lambda_{2}\vdash k-2p}\sum_{\lambda_{1}\vdash n}d_{\lambda_{1}}\operatorname{mult}(V_{H}^{\otimes k-2p},\lambda_{1}\otimes\Lambda_{2})C(\Lambda_{L},\Lambda_{R},\Lambda_{2})\chi_{\Lambda_{L}}(X)\chi_{\Lambda_{R}}(Y)$$
(107)

Obviously the summand vanishes if k - 2p < 0. We see that each time we increase p we drop the number of boxes available for the $\Lambda_L \otimes \Lambda_R$ inner product by two and increase the number of anti-symmetrised V_{nat} by one.

Next take the tensor product $V_{[\operatorname{anti}\operatorname{nat}^{\otimes p}]} \otimes V_{\lambda_1}$

$$d_{[\operatorname{anti}\operatorname{nat}^{\otimes p}]}d_{\lambda_1} = \sum_{\lambda \vdash n} C([\operatorname{anti}\operatorname{nat}^{\otimes p}], \lambda_1, \lambda)d_{\lambda}$$
(108)

and rearrange

$$\chi_F^n = Ps^n \sum_{k,j_L,j_R=0}^{\infty} s^k \chi_{j_L}(X) \chi_{j_R}(Y) \sum_{\lambda \vdash n} d_\lambda$$
$$\sum_{p=0}^n (-1)^p \sum_{\lambda_1 \vdash n} C([\text{anti nat}^{\otimes p}], \lambda_1, \lambda) \sum_{\Lambda_2 \vdash k-2p} \text{mult}(V_H^{\otimes k-2p}, \lambda_1 \otimes \Lambda_2)$$
$$C(\Lambda_L = \{k - 2p, j_L\}, \Lambda_R = \{k - 2p, j_R\}, \Lambda_2)$$
(109)

What is really going on here? We take the original V_{λ} with EoM and for each p we are removing some of the λ , via anti $\left(V_{\text{nat}}^{\otimes p}\right) = V_{[n-p+1,1^{p-1}]} \oplus V_{[n-p,1^p]}$.

This result matches with our goal (49)

$$\operatorname{mult}_{\operatorname{EoM}}(\Delta = n + k, j_L, j_R, \lambda) = \sum_{p=0}^n (-1)^p \sum_{\lambda_1 \vdash n} C([\operatorname{anti} \operatorname{nat}^{\otimes p}], \lambda_1, \lambda) \sum_{\Lambda_2 \vdash k-2p} \operatorname{mult}(V_H^{\otimes k-2p}, \lambda_1 \otimes \Lambda_2)$$
$$C(\Lambda_L = \{k - 2p, j_L\}, \Lambda_R = \{k - 2p, j_R\}, \Lambda_2)$$
(110)

More readably we could write this

 $\operatorname{mult}_{\operatorname{EoM}}(\Delta, j_L, j_R, \lambda) = \operatorname{number of times } \lambda \text{ appears in } \sum_{p=0}^n (-1)^p \left\{ [1^p](V_{\operatorname{nat}}^{\circ p}) \circ [\Lambda_L \otimes \Lambda_R](V_H^{\otimes k-2p}) \right\}$ (111)

Each time we increase p we remove a column from each of Λ_L and Λ_R .

If we're not interested in the S_n multiplicity then

$$\operatorname{mult}_{\operatorname{EoM}}(\Delta, j_L, j_R) = \sum_{\lambda} d_{\lambda} \operatorname{mult}_{\operatorname{EoM}}(\Delta, j_L, j_R, \lambda)$$
$$= \sum_{p=0}^{n} \sum_{K \vdash k-2p} (-1)^p C(\Lambda_L \otimes \Lambda_R, K) \operatorname{Dim}_{d_{\operatorname{nat}}}[1^p] \operatorname{Dim}_{d_H} K$$
(112)

This matches (101).

5 Examples for the onshell case

5.1 Scalar: $j_L = j_R = 0$

Compare this section to its offshell equivalent in Section 3.1. In the decomposition of GL(4) reps K in (59) we now just substitute $\Box(V_H^{\circ 2})$ with V_B . However we must be aware of the alternating expansion of $[t](V_B)$ when we enforce the GL(4) tensor products. If we now do the expansion of S_n reps we get

$$\begin{bmatrix} \left[\frac{k}{2}\right] \left(V_{B}^{\circ \frac{k}{2}}\right) + \left[\left(V_{H}^{\circ 4}\right) \circ \left[\frac{k-4}{2}\right] \left(V_{B}^{\circ \frac{k-4}{2}}\right)\right]_{\leq 4} \\ = \left[\frac{k}{2}\right] \left(V_{B}^{\circ \frac{k}{2}}\right) + \left[\left(V_{H}^{\circ 4}\right) \circ \left[\frac{k-4}{2}\right] \left(V_{B}^{\circ \frac{k-4}{2}}\right) \\ - \sum_{p=0}^{\frac{k-6}{2}} (-1)^{p} \left[1^{p}\right] \left(V_{\text{nat}}^{\circ p}\right) \circ \left[\left[\frac{k-2p}{2}\right] \left(\Box \left(V_{H}^{\circ 2}\right)^{\circ \frac{k-2p}{2}}\right) + \left[\left(V_{H}^{\circ 4}\right) \circ \left[\frac{k-2p-4}{2}\right] \left(\Box \left(V_{H}^{\circ 2}\right)^{\circ \frac{k-2p-4}{2}}\right)\right]_{>4}$$
(113)

In the second line, just as we have done in the explicit offshell examples in Section 3.1.1, we have written the GL(4) tensor product first as an unconstrained $GL(\infty)$ tensor product followed by the subtraction of reps with more than 4 rows.

In terms of operators the counting in (113) corresponds to the operators

$$B^{\dagger}_{h_{1}h_{2}} \cdots B^{\dagger}_{h_{2t-1}h_{2t}} |0\rangle$$

$$B^{\dagger}_{h_{1}h_{2}} \cdots B^{\dagger}_{h_{2t-1}h_{2t}} \epsilon^{\mu_{1}\mu_{2}\mu_{3}\mu_{4}} A^{\dagger}_{[h_{1}\mu_{1}} \cdots A^{\dagger}_{h_{4}]\mu_{4}} |0\rangle$$
(114)

This covers all independent cases where all indices are contracted.

Not that for these operators Young diagrams with more than four rows just vanish because there are only 4 μ indices.

In this section we get sloppy with notation and write $\square(V_H)$ instead of $\square(V_H^{\circ 2})$ - it should be obvious from the number of boxes what space we're symmetrising.

5.1.1 $k = 2, j_L, j_R = 0$

For the offshell case we have

$$\left(\square \otimes \square \right) (V_H) = \square (V_H) \tag{115}$$

For the onshell case we have

$$V_B$$
 (116)

corresponding to the operator

$$B_{h_1h_2}^{\dagger}|0\rangle \tag{117}$$

5.1.2 $k = 4, j_L, j_R = 0$

For the offshell case we have

$$\left(\bigoplus \otimes \bigoplus\right)(V_H) = \bigoplus (\bigoplus (V_H)) + \left[(V_H) = \bigoplus (V_H) + \bigoplus (V_H) + \left[(V_H) + \bigoplus (V_H) + \left[(V_H) + \left[$$

For the onshell case we have

$$\Box (V_B) + \left[(V_H) \right] \tag{119}$$

corresponding to the operators

$$B_{h_1h_2}^{\dagger} \cdots B_{h_3h_4}^{\dagger} |0\rangle \quad \text{and} \quad \epsilon^{\mu_1\mu_2\mu_3\mu_4} A_{[h_1\mu_1}^{\dagger} \cdots A_{h_4]\mu_4}^{\dagger} |0\rangle$$
 (120)

This correctly gives the number of HWS with these quantum numbers and EoM

$$\frac{(n-1)^2(n-2)(n-3)}{6} \tag{121}$$

5.1.3 $k = 6, j_L, j_R = 0$

Here is where problems originally occured in Paul's Mathematica file. That problem turned out to be generic. For the offshell case we have

$$\left(\blacksquare \otimes \blacksquare \right) (V_H) = \left[\blacksquare (\Box (V_H)) + \left[(V_H) \circ \Box (V_H) \right]_{\leq 4} \right]_{\leq 4}$$
$$= \blacksquare (V_H) + \blacksquare (V_H) + \blacksquare (V_H) + \blacksquare (V_H) + \blacksquare (V_H)$$
(122)

For the onshell case we have

$$\left[\Box \Box (V_B) + \left[(V_H) \circ V_B \right]_{\leq 4} = \Box \Box (V_B) + \left[(V_H) \circ V_B - \left[(V_H) \circ V_B \right]_{\leq 4} \right] \right]$$
(123)

corresponding to the operators

$$B_{h_1h_2}^{\dagger}B_{h_3h_4}^{\dagger}B_{h_5h_6}^{\dagger}|0\rangle \quad \text{and} \quad B_{h_1h_2}^{\dagger}\epsilon^{\mu_3\mu_4\mu_5\mu_6}A_{[h_3\mu_3}^{\dagger}\cdots A_{h_6]\mu_6}^{\dagger}|0\rangle \tag{124}$$

This correctly gives the number of HWS with these quantum numbers and EoM

$$\frac{n(n-1)(n-2)(n-3)(5n^2-21n+28)}{144}$$
(125)

This example shows the need for the $C_{4(2T,\Lambda'),..}^{...}$, i.e the GL(4) corrected S_n Clebschs. A simple example for exercise (1) is to do in it this case.

5.1.4 $k = 8, j_L, j_R = 0$

From an SO(4) point of view, this can happen in two different ways

$$\eta\eta\eta\eta$$
 (126)

$$\eta\eta\epsilon$$
 (127)

One might think that

 $\epsilon\epsilon$ (128)

is a separate case, but it is one of (126) when they're antisymmetrised.

***Clarify this.

For the offshell case we have

The first 5 cases are (126); the last 2 are (127).

We write first 5 cases as

$$\Box \Box \Box \Box (\Box \Box) \tag{130}$$

The last two cases are roughly

But we must remember that we only allow GL(4) reps so we must remove extra stuff since

Thus

$$\Lambda_L \otimes \Lambda_R = \blacksquare = \blacksquare \otimes \blacksquare = \blacksquare (\Box) + \blacksquare \circ \Box (\Box) - \blacksquare - \blacksquare - \blacksquare (\Box) + \blacksquare (\Box) = \blacksquare (\Box) + \blacksquare (\Box) = \blacksquare (\Box) =$$

For the onshell case we substitute \square with V_B .

$$\begin{bmatrix} \Box \Box \Box (V_B) + \Box (V_H) \circ \Box (V_B) \end{bmatrix}_{\leq 4}$$

$$= \Box \Box (V_B) + \Box (V_H) \circ \Box (V_B) - \Box (V_H) - \Box (V_H) - \Box (V_H) + V_{\text{nat}} \circ \Box (V_H)$$
(134)

This correctly gives the number of HWS with these quantum numbers and EoM

$$\frac{n(n-1)(n-2)(n-3)(7n^4 - 48n^3 + 143n^2 - 222n + 180)}{1440}$$
(135)

5.1.5 $k = 10, j_L, j_R = 0$

For the offshell case

For the onshell case

$$\begin{bmatrix} \blacksquare & (V_B) + \blacksquare (V_H) \circ \blacksquare (V_B) \end{bmatrix}_{\leq 4}$$

$$= \blacksquare & (V_B) + \blacksquare (V_H) \circ \blacksquare (V_B)$$

$$- \blacksquare & (V_H)$$

$$- \blacksquare & (V_H) - \blacksquare & (V_H) + \blacksquare & (V_H)$$

$$+ V_{\text{nat}} \circ \left(\blacksquare & (V_H) + \blacksquare & (V_H) + \blacksquare & (V_H) \right)$$

$$- \blacksquare & (V_{\text{nat}}) \circ \blacksquare & (V_H) = \blacksquare & (V_H) + \blacksquare & (V_H) \end{pmatrix}$$
(137)

This correctly gives the number of HWS with these quantum numbers and EoM

$$\frac{n(n-1)(n-2)(n-3)(7n^6 - 63n^5 + 285n^4 - 825n^3 + 1608n^2 - 276n + 1280)}{14400}$$
(138)

5.1.6 $k = 12, j_L, j_R = 0$

For the offshell case

For the onsheel case the correct way of getting this is detailed in a SAGE file.

$$(V_B) + (V_H) \circ \dots (V_B)$$

$$- (V_H) - (V_H) = (V_H)$$

$$- (V_H) - \dots$$

$$+ V_{nat} \circ (V_H)$$

$$+ V_{nat} \circ (V_H) + \dots$$

$$- (V_{nat}) \circ (V_H) + \dots$$

$$+ (V_{nat}) \circ (V_H) + \dots$$

$$(140)$$

The general formula is below.

It correctly gives dimension

$$\frac{n(n-1)(n-2)(n-3)(11n^8 - 117n^7 + 702n^6 - 2960n^5 + 9219n^4 - 21083n^3 + 34588n^2 - 36320n + 21000)}{302400}$$
(141)

6 An incorrect theorem

One can expand V_B and V_{nat} in terms of V_H . One might think one could just then expand

$$\left[\frac{k}{2}\right](V_B) + \left[(V_H) \circ \left[\frac{k}{2} - 2\right](V_B)\right]$$
(142)

in terms of V_H and then throw away reps with more than 4 rows. This doesn't work, see A4 notebook 23/3/09. One needs to ignore the $[1^p](V_{nat})$ when throwing away rows, as in (113). I don't understand why.

A π projection

In this section Young diagrams are mostly written in terms of their columns lengths, i.e. we write $[2^{k_2}, 1^{k_1}]^T$ instead of $[k_1 + k_2, k_2]$.

We follow the decomposition in Koike and Terada [2].

To decompose a representation K of GL(2n) into representations Λ of SO(2n) we first remove all possible combinations of contractions η from K to get a Young diagram Λ' . Then we project it to an *n*-row representation Λ of SO(2n) with π .

$$K = \bigoplus_{2T,\Lambda'} g(2T,\Lambda';K) \ \pi(\Lambda') = \bigoplus_{\Lambda} \dim V_{K,\Lambda} \ \Lambda$$
(143)

We have summed over even partitions 2T which correspond to contractions η . The projection π works as follows

- List the l column lengths of Λ' .
- Fold the columns up at n+i-1, where $i \in \{1, \ldots, l\}$ labels each column. Define \vec{k} after cancelling folded with unfolded boxes. For SO(4), i.e. n = 2, this means that if the first column is of length 4, replace it with one of length $k_1 = 0$; if the first column is 3, replace it by $k_1 = 1$; if the second column is 4 replace it by $k_2 = 2$.
- Define \vec{t} by $t_i = k_i i + 1$.
- Define \vec{T} by re-ordering \vec{t} so that $T_j = t_{\sigma(i)}$ for some permutation $\sigma \in S_l$ and $n \ge T_1 > T_2 > \cdots > T_l$.
- Define $\vec{\mu}$ by $\mu_i = T_i + i 1$. These are the column lengths of $\Lambda = \pi(\Lambda')$.
- It appears with a sign given by the sign of the permutation σ .

As an example take $\Lambda' = [6, 5, 3, 3] = [4, 4, 4, 2, 2, 1]^T$ for n = 2 and project it to Λ of SO(4).

$$\Lambda' = \tag{144}$$

Folding up we get $\vec{k} = (0, 2, 4, 2, 2, 1)$. Applying the subtraction we get $\vec{t} = (0, 1, 2, -1, -2, -4)$. Rearranging by size we get T = (2, 1, 0, -1, -2, -4) and $\sigma = (13)$. Finally doing the addition $\Lambda = -[2, 2, 2, 2, 2, 1]^T$ where the sign is the sign of the permutation $\sigma = (13)$.

Diagrams with two rows left the same

$$\pi([2^{k_2}, 1^{k_1}]^T) = [2^{k_2}, 1^{k_1}]^T \tag{145}$$

for $k_1, k_2 \ge 0$.

For diagrams with three rows

$$\pi([3, 1^{k}]^{T}) = [1^{k+1}]^{T}$$

$$\pi([3, 2, *]^{T}) = 0$$

$$\pi([3, 3, 2^{k_{2}}, 1^{k_{1}}]^{T}) = -[2^{k_{2}+2}, 1^{k_{1}}]^{T}$$

$$\pi([3, 3, 3, *]^{T}) = 0$$
(146)

for $k, k_1, k_2 \ge 0$. * represents any column lengths that give a legitimate Young diagram.

The first line is pretty intuitive. A column of length 3 along with k columns of length 1 is replaced by a new Young diagram where we have k + 1 columns of length 1. Equivalently the projected Young diagram has a row of length [k + 1]. Note the sign in the third line.

For diagrams with four rows the non-zero projections are

$$\pi([4]^T) = [0]^T = 1 \text{ dim. rep.}$$

$$\pi([4, 2, 1^k]^T) = -[1^{k+2}]^T$$

$$\pi([4, 3, 1^k]^T) = -[2, 1^{k+1}]^T$$

$$\pi([4, 3, 3, 2^{k_2}, 1^{k_1}]^T) = [2^{k_2+3}, 1^{k_1}]^T$$

$$\pi([4, 4, 1^k]^T) = -[1^{k+2}]^T$$

$$\pi([4, 4, 2^{k_2}, 1^{k_1}]^T) = -[2^{k_2+3}, 1^{k_1}]^T$$
(147)

for $k, k_1, k_2 \ge 0$.

A.1 inverses of π projection

$$\pi^{-1}([0]^T) = \{(+)[0]^T, (+)[4]^T\}$$
(148)

$$\pi^{-1}([1^{a}]^{T}) = (+)[1^{a}]^{T}$$

$$(+)[3, 1^{a-1}]^{T}$$

$$(-)[4, 2, 1^{a-2}]^{T}$$

$$(-)[4, 4, 1^{a-2}]^{T}$$

$$(149)$$

$$\pi^{-1}([2, 1^{a}]^{T}) = (+)[2, 1^{a}]^{T}$$

$$(-)[4, 3, 1^{a-1}]^{T}$$
(150)

$$\pi^{-1}([2,2,1^{a}]^{T}) = (+)[2,2,1^{a}]^{T}$$

$$(-)[3,3,1^{a}]^{T}$$
(151)

$$\pi^{-1}([2^{a_2+3}, 1^{a_1}]^T) = (+)[2^{a_2+3}, 1^{a_1}]^T$$

$$(-)[3, 3, 2^{a_2+1}, 1^{a_1}]^T$$

$$(+)[4, 3, 3, 2^{a_2}, 1^{a_1}]^T$$

$$(-)[4, 4, 4, 2^{a_2}, 1^{a_1}]^T$$
(152)

for $a, a_1, a_2 \ge 0$.

B $\tilde{\pi}$ projection

The non-zero $\tilde{\pi}$ projections are those that "make sense"

$$\widetilde{\pi}([2^{k_2}, 1^{k_1}]^T) = [2^{k_2}, 1^{k_1}]^T
\widetilde{\pi}([3, 1^k]^T) = [1^{k+1}]^T
\widetilde{\pi}([4]^T) = [0]^T \equiv \mathbf{1}$$
(153)

B.1 Inverses of $\tilde{\pi}$ projection

$$\tilde{\pi}^{-1}([0]^T) = [0]^T$$
[4]^T
(154)

$$\tilde{\pi}^{-1}([1^a]^T) = [1^a]^T$$

$$[3, 1^{a-1}]^T$$
(155)

$$\tilde{\pi}^{-1}([2^b, 1^c]^T) = [2^b, 1^c]^T \tag{156}$$

for $a, b \ge 1, c \ge 0$.

C Clebsch-Gordan identities

C.1 $V^{\otimes(n_1+n_2)}$

Suppose we have a decomposition of the fundamental V of $GL({\cal M})$

$$V^{\otimes n} = \bigoplus_{\Lambda \in P(n,M)} V_{\Lambda}^{S_n} \otimes V_{\Lambda}^{GL(M)}$$
(157)

with Clebsch-Gordan

$$C^{\mu_1\cdots\mu_n}_{\Lambda,M_\Lambda,a_\Lambda} \tag{158}$$

Suppose we want to decompose this into $n = n_1 + n_2$

$$V^{\otimes n} = V^{\otimes n_1} \otimes V^{\otimes n_2} = \left(\bigoplus_{\Lambda_1 \in P(n_1, M)} V^{S_n}_{\Lambda_1} \otimes V^{GL(M)}_{\Lambda_1}\right) \otimes \left(\bigoplus_{\Lambda_2 \in P(n_2, M)} V^{S_n}_{\Lambda_2} \otimes V^{GL(M)}_{\Lambda_2}\right)$$
(159)

The Clebsch-Gordan coefficients are related by

$$C^{\mu_{1}\cdots\mu_{n}}_{\Lambda,M_{\Lambda},a_{\Lambda}} = \sum_{\Lambda_{1},\Lambda_{2}} \sum_{a_{\Lambda_{1}},a_{\Lambda_{2}}} \sum_{M_{\Lambda_{1}},M_{\Lambda_{2}}} \sum_{\tau \in g(\Lambda_{1},\Lambda_{2};\Lambda)} C^{a_{\Lambda_{1}},a_{\Lambda_{2}}}_{a_{\Lambda},\tau} C^{M_{\Lambda_{1}},M_{\Lambda_{2}}}_{M_{\Lambda},\tau} C^{\mu_{1}\cdots\mu_{n}}_{\Lambda_{1},M_{\Lambda_{1}},a_{\Lambda_{1}}} C^{\mu_{n+1}\cdots\mu_{n}}_{\Lambda_{2},M_{\Lambda_{2}},a_{\Lambda_{2}}}$$
(160)

 $C^{M_{\Lambda_1},M_{\Lambda_2}}_{M_{\Lambda,\tau}}$ is the GL(M) Clebsch-Gordan; $C^{a_{\Lambda_1},a_{\Lambda_2}}_{a_{\Lambda,\tau}}$ is the S_n outer product.

C.2 Sym $(W^{\otimes k})$

Consider Sym $(W^{\otimes k})$ where $W = V_1 \otimes V_2$ and V_1 is the fundamental rep of GL(M) and V_2 of GL(M'). A representative would be

$$A_{h_1\mu_1}\cdots A_{h_k\mu_k} \tag{161}$$

where the $A_{h_i\mu_i}$ all commute.

We can consider W as the fundamental rep of GL(MM') so that

$$\operatorname{Sym}(W^{\otimes k}) = V_{[k]}^{GL(MM')} \tag{162}$$

The Clebsch-Gordan for this is

$$C^{h_1\mu_1\cdots h_k\mu_k}_{[k],M_{[k]}} \tag{163}$$

However, decomposing in terms of GL(M) and GL(M') separately we have

$$V_1^{\otimes k} = \bigoplus_{\Lambda_1 \in P(k,M)} V_{\Lambda_1}^{S_k} \otimes V_{\Lambda_1}^{GL(M)}$$
(164)

with Clebsch-Gordan coefficient

$$C^{h_1\cdots h_k}_{\Lambda_1,M_{\Lambda_1},a_{\Lambda_1}} \tag{165}$$

and

$$V_2^{\otimes k} = \bigoplus_{\Lambda_2 \in P(n,M')} V_{\Lambda_2}^{S_k} \otimes V_{\Lambda_2}^{GL(M')}$$
(166)

with Clebsch-Gordan coefficient

$$C^{\mu_1\cdots\mu_k}_{\Lambda_2,M_{\Lambda_2},m_{\Lambda_2}} \tag{167}$$

Given the S_k invariance of $\operatorname{Sym}(W^{\otimes k})$ we must have for the S_k inner product

$$[k] \in \Lambda_1 \otimes \Lambda_2 \tag{168}$$

which forces $\Lambda_1 = \Lambda_2$ and we must sum over the S_k states $a_{\Lambda_1} = a_{\Lambda_2}$. So that

$$\left| [k], M_{[k]} \right\rangle = C^{h_1 \mu_1 \cdots h_k \mu_k}_{[k], M_{[k]}} = \sum_{\Lambda_1} \sum_{a_{\Lambda_1}} C^{[k], M_{[k]}}_{\Lambda_1, M_{\Lambda_1}, M'_{\Lambda_1}} C^{h_1 \cdots h_k}_{\Lambda_1, M_{\Lambda_1}, a_{\Lambda_1}} C^{\mu_1 \cdots \mu_k}_{\Lambda_1, M'_{\Lambda_1}, a_{\Lambda_1}}$$
(169)

Counting-wise this is

$$\operatorname{Dim}_{MM'}[k] = \sum_{\Lambda_1 \in P(k,\min(M,M'))} \operatorname{Dim}_M \Lambda_1 \operatorname{Dim}_{M'} \Lambda_1$$
(170)

C.3 Sym $(W^{\otimes 2t+k'})$

We want to combine Appendix Sections C.2 and C.1. First we do the split

$$W^{\otimes 2t+k'} \to V_1^{\otimes 2t+k'} \otimes V_2^{\otimes 2t+k'} \tag{171}$$

so that

$$C_{[k],M_{[k]}}^{h_1\mu_1\cdots h_k\mu_k} = \sum_{K \in P(k,\min(M,M'))} \sum_{a_K} C_{K,M_K,a_K}^{h_1\cdots h_k} C_{K,M'_K,a_K}^{\mu_1\cdots \mu_k}$$
(172)

Then split each tensor into k = 2t + k' according to Appendix Section C.1

$$C_{[k],M_{[k]}}^{h_{1}\mu_{1}\cdots h_{k}\mu_{k}} = \sum_{K\in P(k,\min(M,M'))} \sum_{a_{K}} \sum_{M_{K_{1}},a_{K_{2}}} \sum_{M_{K_{1}},M_{K_{2}}} \sum_{\tau\in g(K_{1},K_{2};K)} C_{a_{K},\tau}^{a_{K_{1}},a_{K_{2}}} C_{M_{K},\tau}^{M_{K_{1}},M_{K_{2}}} C_{K_{1},M_{K_{1}},a_{K_{1}}}^{h_{2}\dots h_{2}} C_{K_{2},M_{K_{2}},a_{K_{2}}}^{h_{2}\dots h_{2}} \sum_{\Lambda_{1},\Lambda_{2}} \sum_{a_{\Lambda_{1}},a_{\Lambda_{2}}} \sum_{M_{\Lambda_{1}},M_{\Lambda_{2}}} \sum_{\tau'\in g(\Lambda_{1},\Lambda_{2};K)} C_{a_{K},\tau'}^{a_{\Lambda_{1}},a_{\Lambda_{2}}} C_{M_{K},\tau'}^{M_{\Lambda_{1}},M_{\Lambda_{2}}} C_{\Lambda_{1},M_{\Lambda_{1}},a_{\Lambda_{1}}}^{h_{2}\dots h_{2}\dots h_{2}} C_{\Lambda_{2},M_{\Lambda_{2}},a_{\Lambda_{2}}}^{h_{2}\dots h_{2}\dots h_{2}}$$
(173)

Next we use a crucial branching coefficient identity

$$\sum_{a_K} C^{a_{K_1}, a_{K_2}}_{a_K, \tau} C^{a_{\Lambda_1}, a_{\Lambda_2}}_{a_K, \tau'} = \delta_{K_1 \Lambda_1} \delta_{K_2 \Lambda_2} \delta_{a_{K_1} a_{\Lambda_1}} \delta_{a_{K_2} a_{\Lambda_2}} \delta_{\tau \tau'}$$
(174)

which can be seen using bra-ket notation. This greatly simplifies our equation to

$$C_{[k],M_{[k]}}^{h_1\mu_1\cdots h_k\mu_k} = \sum_{K\in P(k,\min(M,M'))} \sum_{K_1,K_2} \sum_{a_{K_1},a_{K_2}} \sum_{M_{K_1},M_{K_2}} \sum_{M'_{K_1},M'_{K_2}} \sum_{\tau\in g(K_1,K_2;K)} C_{M_{K_1},M_{K_2}}^{M_{K_1},M_{K_2}} C_{K_1,M_{K_1},a_{K_1}}^{h_1\cdots h_{k_1}} C_{K_2,M_{K_2},a_{K_2}}^{h_{2t+1}\cdots h_k} C_{M'_{K_1},T}^{M'_{K_1},M'_{K_2}} C_{K_1,M'_{K_1},a_{K_1}}^{\mu_1\cdots \mu_{2t}} C_{K_2,M'_{K_2},a_{K_2}}^{\mu_{2t+1}\cdots \mu_k}$$

$$(175)$$

References

- M. H. Rosas, "The Kronecker product of Schur functions indexed by two-row shapes or hook shapes," [arXiv:math/0001084].
- [2] K. Koike and I. Terada, "Young Diagrammatic methods for the representation theory of the classical groups of type B_n, C_n, D_n ," Jour. of Algebra. **107**, 466.