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1 Introduction

Let VF be the representation of SO(2, 4) containing all the fundamental fields VF = {X, ∂µX, ∂µ1∂µ2X, . . . }. We

want to understand how to decompose arbitrary tensor products V ⊗n
F into representations Λ of SO(2, 4) and λ of

Sn.

V ⊗n
F =

∑

Λ

∑

λ⊢n

mult(Λ, λ) V
SO(2,4)
Λ ⊗ V Sn

λ (1)

The irrep labels of SO(2, 4) are Λ = {∆, jL, jR} where ∆ ∈ N ∪ {0} and jL, jR ∈ 1
2N ∪ {0}.1

We use an oscillator construction to build representations of SO(2, 4). The vacuum |0〉 corresponds to X⊗n

and the oscillator a†iµ acting on the vacuum a
†
iµ|0〉 corresponds to the derivative ∂µ acting on the ith site.

To get highest weight states (HWSs) we take linear combinations A
†
hµ = J i

ha
†
iµ corresponding to the hook

representation H = [n− 1, 1] of Sn. h transforms in VH .

The HWSs are given with SO(4) indices by

A
†
h1µ1

· · ·A†
hkµk

|0〉 (2)

or alternatively with SU(2)L × SU(2)R indices

A
†
h1α1α̇1

· · ·A†
hkαkα̇k

|0〉 (3)

2 The offshell case

2.1 GL(4) offshell operator

We want to organise the operators

A
†
h1µ1

· · ·A†
hkµk

|0〉 (4)

into irreps of SO(4) and Sn. A first step is to organise them into irreps of GL(4) and GL(dH).

We can organise the SO(4) indices µi in terms of GL(4) reps K with k boxes and ≤ 4 rows. These reduce to

SO(4) reps in a procedure we will describe later. If V
GL(4)
4

is the fundamental of GL(4) then Schur-Weyl duality

tells us that
(

V
GL(4)
4

)⊗k

=
⊕

K∈P (k,4)

V
GL(4)
K ⊗ V Sk

K (5)

We have summed over partitions K in P (k, 4) with k boxes and ≤ 4 rows, which correspond both to representations

of GL(4) and Sk. The corresponding Clebsch-Gordan coefficient is

C
µ1···µk

K,MK ,aK
(6)

1Note that for derivatives of scalars, if jL is integer jR must be too, and similarly if jL is half-integer. We also have ∆−n = k ≥ 2jL
and ∆− n = k ≥ 2jR.
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MK labels the GL(4) state in V
GL(4)
K and aK the Sk state in V Sk

K .

Similarly we can organise the VH indices hi in terms of GL(dH) reps K ′ with k boxes and ≤ dH rows. These

reduce to Sn reps in a procedure we will describe later. By Schur-Weyl duality

(VH)
⊗k

=
⊕

K′∈P (k,dH)

V
GL(dH)
K′ ⊗ V Sk

K′ (7)

which Clebsch-Gordan coefficient

Ch1···hk

K′,M ′

K′ ,a
′

K′
(8)

Because the A
†
hiµi

commute, the overall operator transforms in Sym((V4 ⊗ VH)⊗k). As discussed in Appendix

Section C.2, this triviality under Sk forces K = K ′ and we must sum over the Sk states to get

|K,MK ,M ′
K〉 =

∑

aK

C
µ1···µk

K,MK ,aK
Ch1···hk

K,M ′
K
aK

A
†
h1µ1

· · ·A†
hkµk

|0〉 (9)

Since K ∈ P (k, 4) it is clear that the rep K organising the hook indices hi can’t have more than 4 rows.

This can further be transformed into a state of the symmetric rep [k] of GL(4dH) with the Clebsch-Gordan

coefficient
∣

∣[k],M[k]

〉

=
∑

K∈P (k,4)

∑

MK

∑

M ′
K

C
K,MK ,M ′

K

[k],M[k]
|K,MK ,M ′

K〉 (10)

2.2 Decomposing GL(dH) reps K into Sn reps

We can further decompose an irrep K of GL(dH) into irreps λ of Sn

V
GL(dH)
K =

⊕

λ∈P (n)

V Sn

λ ⊗ Vλ,K (11)

This gives an overall decomposition

(

V Sn

H

)⊗k

=
⊕

λ∈P (n),K∈P (k)

V Sn

λ ⊗ V Sk

K ⊗ Vλ,K (12)

These reps appear with a multiplicity space Vλ,K which we label with τ in the Clebsch-Gordan

Ch1···hk

λ,aλ,K,aK ,τ (13)

For example for K = of GL(dH) we have

V
GL(dH)

=
(

V ◦2
H

)

= [n]⊕ [n− 1, 1]⊕ [n− 2, 2] (14)

2.3 Decomposing GL(4) reps K into SO(4) reps

SO(4) is a subgroup of GL(4), so representations K of GL(4) are also representations of SO(4). However under

SO(4) reps K of GL(4) may be reducible. In general we will have a decomposition

V
GL(4)
K =

⊕

Λ

V
SO(4)
Λ ⊗ VK,Λ (15)

We have summed over reps Λ of SO(4) contained inside K, which occur with a multiplicity space VK,Λ whose

dimension is in {0, 1}. An SO(4) rep is a 2-row Young diagram with row-lengths given by the SU(2)L × SU(2)R
spins

Λ = [jL + jR, |jL − jR|] (16)

SO(4) has the two invariant tensors

ηµ1µ2 and ǫµ1µ2µ3µ4 (17)

In GL(4) language these appear in

and (18)
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Reducing the k-boxed 4-row GL(4) Young diagram K to Λ is a matter of taking account of the two invariant

tensors η and ǫ. First we remove all possible even partitions 2T from K, corresponding to η contractions (products

of give even partitions). Then project the remaining 4-row Young diagram Λ′ with π to an SO(4) 2-row Young

diagram Λ; this removes the ǫ tensor. Thus

K =
⊕

Λ

dim VK,Λ Λ =
⊕

2T,Λ′

g(2T,Λ′;K) π(Λ′) (19)

We have summed over even partitions 2T which correspond to contractions η2. The Λ′ are then projected to SO(4)

reps Λ. A complete list of these projections is given in Appendix Section A.

For example

= g
(

1, ;
)

π
( )

⊕ g
(

, ;
)

π ( )⊕ g
(

,1;
)

π (1)

= π
( )

⊕ π ( )⊕ π (1)

= ⊕ ⊕ 1 (20)

which works dimensionally as 20 = 10 + 9 + 1.

There is however a complication: sometimes π(Λ′) projects to a representation Λ of SO(4) that appears with

a sign that cancels another SO(4) rep, for example

= g

(

1, ;

)

π

( )

⊕ g

(

, ;

)

π
( )

⊕ g
(

, ;
)

π
( )

= π

( )

⊕ π
( )

⊕ π
( )

= − ⊕ ⊕

= (21)

We don’t want some operators to appear with a negative sign and cancel other operators. Thus we redefine

‘effective’ coefficients

• π̃(Λ′) such that π̃(Λ′) = π(Λ′) when the sign “makes sense”. Otherwise π̃(Λ′) = 0. Note that π̃(Λ′) is always

either 0 or 1. See Appendix Section B for a full description of π̃.

• g̃(2T,Λ′;K) is zero for the reps that get cancelled by the π(Λ′) which don’t make sense. Note that g̃(2T,Λ′;K) ≤

g(2T,Λ′;K).

Thus we get

K =
⊕

Λ

dim VK,Λ Λ =
⊕

2T,Λ′

g̃(2T,Λ′;K) π̃(Λ′) (22)

where everything appears with a positive sign.

So for example

π̃

( )

= 0 (23)

and

g̃

(

, ;

)

= 0 (24)

which gives

= g̃

(

1, ;

)

π̃

( )

⊕ g̃

(

, ;

)

π̃
( )

⊕ g̃
(

, ;
)

π̃
( )

= π̃

( )

⊕ π̃
( )

= (25)

2Since K has ≤ 4 rows, so must anything that is used to build it using the LR rule, e.g. both 2T and Λ′.
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Another example with a much more complicated cancellation

= π

( )

⊕ π
( )

⊕ π

( )

⊕ π
( )

⊕ π

( )

⊕ π
( )

⊕ π

( )

= ⊕− ⊕ 0⊕ 0⊕ 0⊕ ⊕ 1

= ⊕ 1 (26)

Dimensionally this works 10 = 9 + 1. In the effective description we would have

π̃

( )

= 0 and π̃
( )

= 0 (27)

2.4 Going backwards

Suppose on the other hand we are given k and Λ and we want to work out not only the GL(4) rep K but also the

structure of the tensor K and how it contains the two invariant SO(4) tensors

ηµ1µ2 and ǫµ1µ2µ3µ4 (28)

This is extremely important because in the onshell case we want to apply the equations of motion whenever η

appears.

The procedure is as follows:

• Take Λ and look up its inverses under the π̃ projection π̃−1(Λ) = {Λ′}. These inverses are listed in Appendix

Section B.1.

• Given a Λ′ with k′ boxes this defines a GL(4) tensor with no contractions η. Λ′ may now contain ǫ’s.

• Next we need to add t contractions η to Λ′ to make it up to a GL(4) Young diagram K with k = k′ + 2t

boxes. We do this by GL(4)-tensoring all even partitions 2T with 2t boxes and at most 4 rows with Λ′ to get

K, as long as the effective coupling is non-zero g̃(2T,Λ′;K) ≥ 1.

For a given k and Λ this will give a list of GL(4) tensors K

{K} =
∑

k′

⊕

Λ′⊢k′,2T⊢k−k′

g̃(2T,Λ′;K) δ(Λ = π̃(Λ′)) (29)

This list is entirely positive and contains no cancellations. Looking forward to the SU(2)L × SU(2)R section,

ΛL ⊗ ΛR = {K} as defined here.

2.5 The explicit decomposed operator

We will now explicitly decompose the GL(4) tensor, separating the t η contractions from the Λ′ tensor that projects

to Λ with π̃.

To do this we first want to effect for W = V4 ⊗ VH

Sym(W⊗k) → V ⊗2t
4

⊗ V ⊗k′

4
⊗ V ⊗2t

H ⊗ V ⊗k′

H (30)

See Appendix Section C.3.

We get

|K,MK ,M ′
K , H,Λ′, τ〉

=
∑

MH ,M ′
H

∑

MΛ′ ,M ′

Λ′

∑

aH ,aΛ′

C
τ,MK

MH ,MΛ′
C

τ,M ′
K

M ′
H
,M ′

Λ′
C

µ1···µ2t

H,MH ,aH
C

µ2t+1···µk

Λ′,MΛ′ ,aΛ′
Ch1···h2t

H,M ′
H
,aH

C
h2t+1···hk

Λ′,M ′

Λ′ ,aΛ′
A

†
h1µ1

· · ·A†
hkµk

|0〉 (31)

K is a k-box, 4-row rep with GL(4) state MK and GL(dH) state M ′
K . H ∈ P (2t, 4) and Λ′ ∈ P (k′, 4). τ runs over

g(H,Λ′;K) for the GL(4) tensor product H ◦ Λ′ =
⊕

K g(H,Λ′;K)K.

Now we will butcher this operator for the GL(4) to SO(4) decomposition, paying attention to the interplay

between V4 and VH . We will
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• Replace the V ⊗2t
4

tensor Cµ1···µ2t

H,MH ,aH
by ηµ1µ2 · · · ηµ2t−1µ2t . This removes the MH multiplicity.

• This forces an St
2 ⋉St symmetry on the corresponding V ⊗2t

H tensor Ch1···h2t

H,M ′
H
,aH

. This can be seen most simply

if we define S
†
h1h2

≡ ηµ1µ2A
†
h1µ1

A
†
h1µ1

and we see that Ch1···h2t

H,M ′
H
,aH

is contracted with S
†
h1h2

· · ·S†
h2t−1h2t

. As

discussed below in Section 2.5.1 this symmetry forces H to have only even rows H = 2T . It also kills the a2T
multiplicity to leave just the M ′

2T multiplicity.

• τ̃ now runs over the effective multiplicity g̃(2T,Λ′;K) instead of g(2T,Λ′;K). Because K is a 4-row tensor,

2T and Λ′ and their product can only have 4 rows.

• Λ′ and its GL(4) state MΛ′ project down to the SO(4) rep Λ and SO(4) state MΛ with the projection π̃. We

will write this Π̃
Λ′,MΛ′

Λ,MΛ
. There is no multiplicity here.

This results in an operator

|K,M ′
K , 2T,Λ′,Λ,MΛ, τ̃ 〉

=
∑

aΛ′

C
τ̃ ,M ′

K

M ′
2T ,M ′

Λ′
Π̃

Λ′,MΛ′

Λ,MΛ
C

µ2t+1···µk

Λ′,MΛ′ ,aΛ′
Ch1···h2t

2T,M ′
2T

C
h2t+1···hk

Λ′,M ′

Λ′ ,aΛ′
S
†
h1h2

· · ·S†
h2t−1h2t

A
†
h2t+1µ2t+1

· · ·A†
hkµk

|0〉 (32)

To get the Sn rep λ we must further decompose the GL(dH) state M ′
K of K along the lines of Section 2.2.

2.5.1 The St
2 ⋉ St reduction

A note on the coefficients Ch1h2···h2t

2T,M ′
2T

. We can first decompose the tensor product V ⊗2t
H in the obvious way into

irreps of GL(VH)⊗ S2t. This is done with coefficients:

Ch1···h2t

H,M ′
H
,aH

(33)

Now the symmetry conditions on the indices are invariance under St
2 ⋉ St, i.e picking the trivial rep of this group

which comes from (1,1) of St
2 and St. The semi-direct product is a subgroup of S2t. We can decompose the states

(H, aH) of S2t into irreps of the semidirect product subgroup. We need to pick the trivial irrep. of this semi-direct

product. So we have a branching coefficient

C
(1,1)SD

H,aH
= δ(H, 2T )C

(1,1)SD

2T,a2T
(34)

In other words the branching coefficient is zero unless H = 2T . So we have a decomposition

Ch1h2···h2t

2T,M ′
2T

= Ch1···h2t

2T,M ′
2T ,a2T

C
(1,1)SD

2T,a2T
(35)

There is a counting check on the statement that the rep. of S2t induced from the trivial of St
2⋉St is the direct sum

of even YD. The order of the semi-direct product group is 2tt!. The rep. induced from the trivial has dimension
(2t)!
t!2t . We have checked, in examples (as reported in the Appendix of note-EOM7.tex) that

(2t)!

t!2t
=
∑

2T

d2T (36)

Note that the multiplicity of the rep. H of S2t in the induction of the trivial of the subgroup St
2 ⋉ St is the same

as the multiplicity of the trivial of the subgroup in the restriction of H to the subgroup. This induction-restriction

duality is Frobenius duality.

The flip Schur-Weyl of this dimension formula is

Dim dH (dH+1)

2

[t] =
∑

2T∈P (2t)

DimdH
2T (37)
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2.6 SO(4) counting

For a given SO(4) rep Λ and dimension ∆ = n+ k we have using the final operator (32) and (29)

mult(Λ,∆) =
∑

K∈P (k,4)

∑

k′

⊕

Λ′⊢k′,2T⊢k−k′

g̃(2T,Λ′;K) δ(Λ = π̃(Λ′)) DimdH
K (38)

Refining to a specific Sn rep λ using Section 2.2 we get

mult(Λ,∆, λ) =
∑

K∈P (k,4)

∑

k′

∑

Λ′⊢k′,2T⊢k−k′

g̃(2T,Λ′;K) δ(Λ = π̃(Λ′)) mult(V ⊗k
H , λ⊗K) (39)

We prove these formulae below using SU(2)L × SU(2)R language.

2.7 From SO(4) to SU(2)L × SU(2)R

An alternative way of getting the list of GL(4) repsK from k and the SO(4) rep Λ is to take the inner product of the

two corresponding GL(2)L ×GL(2)R reps. This is more straightforward, but we lose the explicit decomposition of

K into η’s and ǫ’s. This is because the two invariant tensors of SU(2)L×SU(2)R ǫα1α2 and ǫα̇1α̇2 don’t distinguish

η from ǫ. The SO(4) tensors are expressed as

ηµ1µ2ai1µ1ai2µ2 = ǫα1α2ǫα̇1α̇2ai1α1α̇1ai2α2α̇2

ǫµ1µ2µ3µ4ai1µ1ai2µ2ai3µ3ai4µ4 = ǫα1α2ǫα̇1α̇3ǫα3α4ǫα̇2α̇4ai1α1α̇1ai2α2α̇2ai3α3α̇3ai4α4α̇4 (40)

It is however much easier to understand the counting from a SU(2)L × SU(2)R perspective.

2.8 SU(2)L × SU(2)R offshell operator

For SU(2)L × SU(2)R we are organising

A
†
h1α1α̇1

· · ·A†
hkαkα̇k

|0〉 (41)

We can organise the SU(2)L indices αi with a GL(2)L rep ΛL = [tL + 2jL, tL] and the SU(2)R indices α̇i with a

GL(2)R rep ΛR = [tR+2jR, tR]. These numbers satisfy 2tL+2jL = 2tL+2jL = k so that ΛL and ΛR both contain

k boxes.

We proceed for the GL(2)L ×GL(2)R tensors as for GL(4)

Cα1···αk

ΛL,ML,aL
Cα̇1···α̇k

ΛR,MR,aR
Ch1···hk

λ,aλ,κ,aκ,τ
A

†
h1α1α̇1

· · ·A†
hkαkα̇k

|0〉 (42)

The A
†
hiαiα̇i

all commute, so the overall operator transforms in the trivial [k] of Sk. Thus we combine the free

Sk indices of this operator with an Sk Clebsch-Gordan

Ô[ΛL,ML,ΛR,MR, λ, aλ, {τ, κ, τ̂}]

= C
ΛL,aL;ΛR,aR;κ,aκ

[k],τ̂ Cα1···αk

ΛL,ML,aL
Cα̇1···α̇k

ΛR,MR,aR
Ch1···hk

λ,aλ,κ,aκ,τ
A

†
h1α1α̇1

· · ·A†
hkαkα̇k

|0〉 (43)

τ̂ labels the multiplicity of [k] in the Sk tensor product ΛL⊗ΛR⊗κ, or alternatively the number of times κ appears

in the Sk tensor product

ΛL ⊗ ΛR =
∑

κ

C(ΛL,ΛR, κ) κ (44)

It is a rule from [1] that the inner product of two two-row reps gives reps with at most four rows. Thus κ has at

most 4 rows.

2.8.1 GL(4) as a GL(2)L ×GL(2)R product

We can of course convert between GL(2)L ×GL(2)R and GL(4), noticing that 2× 2 = 4.

Applying this to the tensor products we see that the 4-row κ in equation (44) is identified with the GL(4) rep

K.

Thus to get K from k and Λ, we find the corresponding GL(2)L×GL(2)R reps ΛL and ΛR and take their inner

product.
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2.9 Offshell counting

We focus on the question:

• Given an SO(2, 4) rep (∆ = n+ k, jL, jR) and an Sn rep λ, how many HWSs are there?

This is most easily answered from the SU(2)L × SU(2)R point of view. Considering the operator (43), we just

sum over the {τ,K, τ̂} multiplicity labels

mult(∆, jL, jR, λ) =
∑

K⊢k

C(ΛL,ΛR,K) mult(V ⊗k
H , λ⊗K) (45)

where τ̂ runs over the C(ΛL,ΛR,K) times K appears in ΛL ⊗ ΛR and τ runs over the mult(V ⊗k
H , λ ⊗ K) times

λ⊗K appears in V ⊗k
H .

More readably we could write this

mult(∆, jL, jR, λ) = number of times λ appears in [ΛL ⊗ ΛR] (V
⊗k
H ) (46)

Given the relation between the inner product and SO(4) tensors we can also write this in SO(4) language

mult(∆,Λ, λ) =
∑

k′

∑

Λ′⊢k′

δ(Λ = π̃(Λ′)) number of times λ appears in

[

[

k−k′

2

]

( ◦
k−k′

2 ) ◦4 Λ
′

]

(V ⊗k
H ) (47)

=
∑

k′

∑

Λ′⊢k′

∑

2T⊢k−k′

∑

K⊢k

δ(Λ = π̃(Λ′)) g̃(2T ,Λ′;K)mult(V ⊗k
H , λ⊗K) (48)

where 2T are even partitions; we remember that the tensor products ◦4 and g̃ only allow K with 4 rows; it is also

only an effective tensor product.

2.10 Offshell character expansion and proof of counting

Below we will focus on doing the decomposition (1) in terms of SO(2, 4) characters. If χF (s, x, y) is the character

of VF then

[χF (s, x, y)]
n =

∑

∆,jL,jR

∑

λ⊢n

mult(∆, jL, jR, λ) dλ χ∆,jL,jR(s, x, y) (49)

The offshell character of VF , all the descendants of X , is

χF (s, x, y) = χ1,0,0 = Ps (50)

P accounts for all the descendants with derivatives

P =
1

(1− sxy)(1 − sx−1y)(1 − sxy−1)(1− sx−1y−1)
(51)

For a general SO(2, 4) irrep

χ∆,jL,jR(s, x, y) = Ps∆χjL(X)χjR(Y ) (52)

where ∆ = n + k, where k is the number of derivatives for the highest weight, and X = diag(x, x−1) ∈ SU(2).

Since X is in SU(2) we can remove columns of length two when we work out the character, e.g.

χ (X) = χ (X) (53)

As we worked out previously in Section 7 of sl2diag.dvi and Section 2 of note-EOM.dvi by expanding Pn−1

in terms of VH

χn
F = [Ps]

n

=Psn
∞
∑

k=0

sk
∑

ΛL,ΛR,Λ2⊢k

∑

λ⊢n

dλ mult(V ⊗k
H , λ⊗ Λ2)C(ΛL,ΛR,Λ2)χΛL

(X)χΛR
(Y )

=Psn
∞
∑

k,jL,jR=0

skχjL(X)χjR(Y )
∑

λ⊢n

dλ

∑

Λ2⊢k

mult(V ⊗k
H , λ⊗ Λ2) C

(

ΛL =
[

k
2 + jL,

k
2 − jL

]

,ΛR =
[

k
2 + jR,

k
2 − jR

]

,Λ2

)

(54)
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To make life simpler write ΛL = {k, jL} for the SU(2) 2-row Young diagram with k boxes corresponding to the

spin jL rep.

ΛL =
[

k
2 + jL,

k
2 − jL

]

≡ {k, jL} ∼ [2jL] (55)

where [2jL] is the single-row Young diagram with 2jL boxes, corresponding to the spin jL rep.

This result matches with our goal (49)

mult(∆ = n+ k, jL, jR, λ) =
∑

Λ2⊢k

mult(V ⊗k
H , λ⊗ Λ2) C (ΛL = {k, jL},ΛR = {k, jR},Λ2) (56)

To get the overall multiplicity of the SO(2, 4), ignoring the Sn rep, we sum over the λ ⊢ n,

mult(∆ = n+ k, jL, jR) =
∑

λ⊢n

dλ mult(∆ = n+ k, jL, jR, λ)

=
∑

Λ2⊢k

dimn−1 Λ2 C (ΛL = {k, jL},ΛR = {k, jR},Λ2) (57)

3 Examples for the offshell case

3.1 Scalar: jL = jR = 0

Given k and jL = jR = 0 we want to find the GL(4) reps K.

Following the prescription in Section 2.3 the SO(4) rep is Λ = [0]. Taking the inverse of the π projection from

equation (148) in Appendix Section A.1 we get

π−1([0]) = {Λ′} = {[0], [14]} (58)

Next we add the contractions to get a 4-row K with k boxes.

For Λ′ = [0], k′ = 0 and the number of contractions is t = k
2 . Thus the reps K come from a GL(4) tensor

product of [0] with even reps with k = 2t boxes K = 2T ⊢ k.

Λ′ = [14] corresponds to a single ǫ tensor. k′ = 4 and the number of contractions is t = k−4
2 . The reps K come

from a GL(4) tensor product of [14] with even reps with k − 4 boxes K = [14] ◦ (2T ⊢ k − 4).

We find exactly the same expansion of GL(4) reps K by taking the inner product of the two corresponding

GL(2) reps:

ΛL ⊗ ΛR = [k2 ,
k
2 ]⊗ [k2 ,

k
2 ] =

[

[k2 ](
◦
k
2 ) + ◦ [k−4

2 ]( ◦
k−4
2 )

]

≤4

=
∑

K (59)

[·]≤4 means only keep K if K has 4 or fewer rows, i.e. we are implementing the GL(4) tensor product ◦4. ⊗ is the

Sk inner product.

***This isn’t proved, but true up to k = 12. NB: this observation first brought up by Paul in Mathematica file

for k = 6. Should be able to prove using this paper on the inner product of two-row reps: [1].

This splits into Young diagrams with even and odd row lengths. If we write each diagram in terms of all 4 row

lengths, e.g. [3, 1, 0, 0] for [3, 1], then K runs over all Young diagrams of size k with differences between the rows

always even ([3, 1, 0, 0] fails this test).

We never need more than one copy of building the Young diagrams because, e.g. appears in ( ◦4).

***Clarify this.

That the LHS of (59) gives the correct offshell counting is proved above.

Following Section 2.5 the operators corresponding to (59) are

C
M ′

K

M ′
2T

Ch1···h2t

2T,M ′
2T

S
†
h1h2

· · ·S†
h2t−1h2t

|0〉

C
τ̃ ,M ′

K

M ′
2T ,M ′

[14]

Π̃
[14],M[14]

[0] C
µ2t+1···µk

[14],M[14]
Ch1···h2t

2T,M ′
2T

C
h2t+1···hk

[14],M ′

[14]

S
†
h1h2

· · ·S†
h2t−1h2t

A
†
h2t+1µ2t+1

· · ·A†
hkµk

|0〉 (60)

This covers all independent cases where all indices are contracted and the SO(4) state is trivial. Since K ∈ P (k, 4)

this restricts the number of rows in 2T .
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3.1.1 Explicit examples

For k = 2 only Λ′ = [0] applies and we just get

K = ⊗ = (61)

For k = 4 we also get a contribution from Λ′ = [14] too
∑

K = ⊗ = ( ◦2) +

= + + (62)

For k = 6
∑

K = ⊗ =

[

( ◦3) + ◦

]

≤4

= + + +

= ( ◦3) + ◦ − (63)

In the final line we have rewritten it as a generic GL(∞) tensor product or general symmetric group outer product,

but subtracting the reps with more than 4 rows. This will be useful when we count the onshell operators.

For k = 8
∑

K = ⊗ =

[

( ◦4) + ◦ ( ◦2)

]

≤4

= + + + +

+ +

= ( ◦4) + ◦ ( ◦2)− − − (64)

For k = 10
∑

K = ⊗ =

[

( ◦5) + ◦ ( ◦3)

]

≤4

= + + + + +

+ + +

= ( ◦5) + ◦ ( ◦3)−

− − − − − − − (65)

For k = 12

For the offshell case
∑

K = ⊗ =

[

( ◦6) + ◦ ( ◦4)

]

≤4

= + + +

+ + + + +

+ + + + + (66)
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3.2 jL − jR = 0

Given k and jL = jR = j we want to find the GL(4) reps K.

Following the prescription in Section 2.3 the SO(4) rep is Λ = [2j]. Taking the inverse of the π projection from

equation (149) in Appendix Section A.1 we get

π−1([2j]) = {Λ′} = {[2j], [2j, 1, 1],−[2j, 2, 1, 1],−[2j, 2, 2, 2]} (67)

The first two here make sense since

∼ ∼ ǫµ1µ2µ3µ4A
†

[h2µ2
A

†
h3µ3

A
†

h4]µ4
(68)

Note that the last two appear for j ≥ 1 and appear with a minus sign.

Next we add the contractions to get a 4-row K with k boxes.

For Λ′ = [2j], k′ = 2j and the number of contractions is t = k−2j
2 .

For Λ′ = [2j, 1, 1], k′ = 2j + 2 and the number of contractions is t = k−2j−2
2 .

For Λ′ = −[2j, 2, 1, 1], k′ = 2j + 4 and the number of contractions is t = k−2j−4
2 .

For Λ′ = −[2j, 2, 2, 2], k′ = 2j + 6 and the number of contractions is t = k−2j−6
2 .

3.2.1 jL = jR = 1
2

k = 1 is trivial.

For k = 3 we get

∑

K = ΛL ⊗ ΛR = ⊗ = ◦ +

= + + (69)

For k = 5 we get

∑

K = ΛL ⊗ ΛR = ⊗ = ◦ ( ◦2) + ◦

= + + + + + (70)

3.2.2 jL = jR = 1

k = 2 is trivial.

For k = 4 we get

∑

K = ΛL ⊗ ΛR = ⊗ = ◦ +

= + + + (71)

For k = 6 we get

∑

K = ΛL ⊗ ΛR = ⊗ = ◦ ( ◦2) + ◦ −

= + + + + +

+ + + (72)

This is the first time a Λ′ appears with a minus sign; it cancels the appearance of in ◦ .

For k = 8 we get

∑

K = ΛL ⊗ ΛR = ⊗ = ◦ ( ◦3) + ◦ ( ◦2)− ◦ − (73)

I’ve checked this explicitly, but it’s too tedious to write out.
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3.2.3 jL = jR = 3
2

k = 3 is trivial.

For k = 5 we get

∑

K = ΛL ⊗ ΛR = ⊗ = ◦ +

= + + + (74)

3.3 jL − jR = 1

Given k and jL = jR + 1 we want to find the GL(4) reps K.

Following the prescription in Section 2.3 the SO(4) rep is Λ = [2jR+1, 1]. Taking the inverse of the π projection

from equation (150) in Appendix Section A.1 we get

π−1([2jR + 1, 1]) = {Λ′} = {[2jR + 1, 1],−[2jR + 1, 2, 2, 1]} (75)

Next we add the contractions to get a 4-row K with k boxes.

For Λ′ = [2jR + 1, 1], k′ = 2jR + 2 and the number of contractions is t = k−2jR−2
2 .

For Λ′ = −[2jR + 1, 2, 2, 1], k′ = 2jR + 6 and the number of contractions is t = k−2jR−6
2 . This is only a legal

diagram for jR ≥ 1
2 .

3.3.1 jL = 1, jR = 0

Λ = [1, 1].

k = 2 is trivial.

For k = 4 we get

∑

K = ΛL ⊗ ΛR = ⊗ = ◦

= + (76)

For k = 6 we get

∑

K = ΛL ⊗ ΛR = ⊗ = ◦ ( ◦2) (77)

3.3.2 jL = 3
2 , jR = 1

2

Λ = [2, 1].

k = 3 is trivial.

For k = 5 we get

∑

K = ΛL ⊗ ΛR = ⊗ = ◦

= + + + (78)

For k = 7 we get a contribution from Λ′ = [2, 2, 2, 1] which has to appear with a minus sign to gel with the

inner product

∑

K = ΛL ⊗ ΛR = ⊗ = ◦ ( ◦2)− (79)

This is another example of the important of the minus sign.

3.3.3 jL = 2, jR = 1

Λ = [3, 1].

k = 4 is trivial.

12



For k = 6 we get

∑

K = ΛL ⊗ ΛR = ⊗ = ◦

= + (80)

For k = 8 we get a contribution from Λ′ = [3, 2, 2, 1] which has to appear with a minus sign to gel with the

inner product

∑

K = ΛL ⊗ ΛR = ⊗ = ◦ ( ◦2)− (81)

3.4 jL − jR = 2

Following the prescription in Section 2.3 the SO(4) rep is Λ = [2jR + 2, 2]. Taking the inverse of the π projection

from equation (151) in Appendix Section A.1 we get

π−1([2jR + 2, 2]) = {Λ′} = {[2jR + 2, 2],−[2jR + 2, 2, 2]} (82)

3.4.1 jL = 2, jR = 0

For k = 4 this is trivial

∑

K = ⊗ = (83)

For k = 6 we get a non-trivial contribution with a minus sign

∑

K = ⊗ = ◦ −

= + (84)

3.5 jL − jR = 3

Following the prescription in Section 2.3 the SO(4) rep is Λ = [2jR + 3, 3]. Taking the inverse of the π projection

from equation (152) in Appendix Section A.1 we get

π−1([2jR + 3, 3]) = {Λ′} = {[2jR + 3, 3],−[2jR + 3, 3, 2], [2jR + 3, 3, 3, 1],−[2jR + 3, 3, 3, 3]} (85)

3.5.1 jL = 3, jR = 0

For k = 6 this is trivial

∑

K = ⊗ = (86)

For k = 8

∑

K = ⊗ = ◦ −

= + (87)

For k = 10

∑

K = ⊗ = ◦ ( ◦2)− ◦ +

= + + + + + (88)

For k = 12

∑

K = ⊗ = ◦ ( ◦3)− ◦ ( ◦2) + ◦ − (89)
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4 The onshell case

4.1 The onshell operator

We want to remove the equations of motion for individual fields ∂µ∂µX = 0, i.e. when two a
†
iµ act on the same

place labelled by i and have their SO(4) indices contracted by η

ηµ1µ2a
†
iµ1

a
†
iµ2

(90)

There is no summation over i. It is clear that we must work in the SO(4) formalism to do this.

For our HWS consider the contraction of two hooks VH

ηµ1µ2A
†
h1µ1

A
†
h2µ2

(91)

Because η is symmetric, as a representation of Sn this transforms in (V ◦2
H ) = Vnat ⊕V[n−2,2]. To apply the EoM

we just remove the diagonal Vnat (which corresponds to when ∂µ∂µ are acting on the same site) from (V ◦2
H ) to

get VB ≡ V[n−2,2]. Thus whenever we contract two hooks, we must project to VB

ηµ1µ2A
†
h1µ1

A
†
h2µ2

→ B
†
h1h2

≡ P
h′
1h

′
2

h1h2
S
†

h′
1h

′
2
= P

h′
1h

′
2

h1h2
ηµ1µ2A

†

h′
1µ1

A
†

h′
2µ2

(92)

There is more detail on this projection in note-EOM. If we feed this projected contraction into the offshell operator

(32) we find
∣

∣

∣K, M̃ ′
K , 2T,Λ′,Λ,MΛ, τ̃

〉

=
∑

aΛ′

C
τ̃ ,M̃ ′

K

M̃ ′
2T ,M ′

Λ′

Π̃
Λ′,MΛ′

Λ,MΛ
C

µ2t+1···µk

Λ′,MΛ′ ,aΛ′
Ch1···h2t

2T,M̃ ′
2T

C
h2t+1···hk

Λ′,M ′

Λ′ ,aΛ′
B

†
h1h2

· · ·B†
h2t−1h2t

A
†
h2t+1µ2t+1

· · ·A†
hkµk

|0〉 (93)

It’s important to note that we’ve had to modify the GL(dH) state to M̃ ′
2T of 2T to account for the fact that we’ve

projected out the equation of motion terms. It’s not clear that this really corresponds to a GL(dH) rep anymore.

A GL(dH) description of Sym(V ⊗t
B ) is useful to get one description of the counting but not essential. As

explained in more detail in symvb.tex we have

Sym(V ⊗t
B ) =

⊕

2T,λ2

V2T,φ ⊗ Vλ2 ⊗ V2T,λ2 (94)

V2T,φ is a 1-dimensional space corresponding to the even rep. 2T of S2t which transforms as the trivial of the

St
2 ⋉ St subgroup. The existence of the decomposition 94 is also useful for replacing Ch1···h2t

2T,M̃ ′
2T

which manifestly

makes sense. We replace it with Ch1···h2t

2T,λ2,aλ2
,τ2T,λ2

. The state τ2T,λ2 runs over dimV2T,λ2 . We can also decompose

the GL(dH) state M ′
Λ′ into Sn states :

V
(GL(dH))
Λ′ =

⊕

λ3

V λ3

(Sn)
⊗ V λ3

Λ′ (95)

with a multiplicity label τΛ′,λ3 running over DimV λ3

Λ′ . So we will have the corresponding Clebsch C
Λ′,M ′

Λ′

λ3,aλ3
,τΛ′,λ3

.

We can couple the resulting Sn state aλ3 with the state aλ2 with an Sn inner Clebsch C
λ3,λ2,aλ2

,aλ3

4(2T,Λ′);λ,aλ
constrained by

the GL(4) cutoff. The subscript 4(2T,Λ′) indicates that Sn reps coming from Λ′ and Sn reps which were coupled

to 2T are coupled to only the λ which are constrained to by the requirement that 2T ⊗Λ′ does not have more than

4 rows.

The formula gets longer, but teh steps are simple :

|λ(Sn), λ2(Sn), λ3(Sn), τ2T,λ2 , τΛ′,λ2 , 2T (S2t),Λ
′,Λ(so(4)),MΛ〉

= C
λ3,λ2,aλ2

,aλ3

4(2T,Λ′);λ,aλ
C

Λ′,M ′

Λ′

λ3,aλ3
,τΛ′,λ3

Π̃
Λ′,MΛ′

Λ,MΛ
Ch1···h2t

2T,λ2,aλ2
,τ2T,λ2

C
µ2t+1···µk

Λ′,MΛ′ ,aΛ′
C

h2t+1···hk

Λ′,M ′

Λ′ ,aΛ′

B
†
h1h2

· · ·B†
h2t−1h2t

A
†
h2t+1µ2t+1

· · ·A†
hkµk

|0〉 (96)

In the above ket, we have made explicit what group the rep. label belongs to, so the formula is easier to read.

The label same Λ′ is used for GL(4), GL(dH), Sk′ , which is due to Schur-Weyl duality and Sk′ symmetry, which is

explained in more detail in section C.2. All repeated state-label indices are summed.
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Where do the GL(4) cutoffs appear in the above formula ? Λ′ is a GL(4) label, also shared by other groups,

so it imposes GL(4) cutoffs. Compared to 93 the updated 96 has lost the GL(dH)-Clebsch C
τ̃ ,M̃ ′

K

M̃ ′
2T ,M ′

Λ′

. When we

had GL(dH) states in the off-shell case, it was easy to state how the GL(4) cutoff acts. It is clear we still need a

GL(4) cutoff, but now it has to constrain the Sn tensor product. ( the need for this cutoff can be seen in the k = 6

example ).

Exercise 1 : Can we try and write a formula for C
λ3,λ2,aλ2

,aλ3

4;λ,aλ
which makes a little clearer how the 4-cutoff

operates. The words describing it above are probably enough to see how it works in examples such as the k = 6

below, but a neat general formula would be good.

Exercise 2 : That should allow us to write a counting formula which is built as a sum of products of manifestly

positive multiplicities, but equal to the alternating sum formulae.

4.2 SO(4) onshell counting

To account for the loss of these terms in the counting we need to proceed carefully.

In the offshell case for the η contractions we had

Sym(Sym(V ◦2
H )◦t) = [t]( (V ◦2

H )◦t) =
∑

2T∈P (2t)

2T (V ◦2t
H ) (97)

By expanding into even Young diagrams with VH indices we could easily see the GL(4) contraint. Here we have

Sym(V ◦t
B ) (98)

How do we translate into VH indices so we can see the GL(4) contraints?

Comment : The dual of GL(4) is Sk on W⊗k. On W⊗2t
1 ⊗W⊗k′

2 it is S2t × Sk′ . As we see in sections C.2 and

C.3, we expect the GL(4) cutoff to always be expressed in terms of its duals. A GL(dH) presentation is possible

as follows, but should not be essential.

The answer is to write VB = (V ◦2
H )− Vnat and perform the alternating expansion

[t](V ◦t
B ) = [t]

(

( (V ◦2
H )− Vnat)

◦t
)

=

t
∑

p=0

(−1)p[1p](V ◦p
nat) ◦ [t− p]

(

( (V ◦2
H ))◦t−p

)

=

t
∑

p=0

∑

2T∈P (2t−2p)

(−1)p[1p](V ◦p
nat) ◦ 2T (V

◦2t−2p
H ) (99)

For example t = 3

(V ◦3
B ) = (( (V ◦2

H ))◦3)− Vnat ◦ (( (V ◦2
H ))◦2) + (V ◦2

nat) ◦ (V ◦2
H )− (V ◦3

nat)

=
(

+ +
)

(V ◦6
H )− Vnat ◦

(

+
)

(V ◦4
H ) + (V ◦2

nat) ◦ (V ◦2
H )− (V ◦3

nat) (100)

So to apply the GL(4) constraint properly here, whenever we tensor 2T (V ◦2t−2p
H ) with Λ′(V ◦k′

H ) we must restrict

the result K ⊢ k − 2p to 4 rows.

For a given SO(4) rep Λ and dimension ∆ = n + k the counting inherits the alternating sum (cf. the offshell

formula (38))

multEoM(Λ,∆) =

t
∑

p=0

(−1)p
∑

K∈P (k−2p,4)

∑

k′

∑

Λ′⊢k′,2T⊢k−k′−2p

g̃(2T,Λ′;K) δ(Λ = π̃(Λ′)) Dimdnat [1
p] DimdH

K

(101)

Refining to a specific Sn rep λ (cf. offshell version (39)) we must expand out

[1p](V ◦p
nat)⊗K(V ◦k−2p

H ) (102)

into Sn reps. This is done in detail below.

We prove these formulae below using the SU(2)L × SU(2)R character expansion.
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4.3 Onshell character expansion

For the character of VF we must now apply the EoM and remove terms like ∂µ∂
µX from VF . This gives a character

χF = χ1,0,0 = P (1− s2)s (103)

For n ≥ 3 the characters are not modified from the off-shell case

χ∆,jL,jR = Ps∆χjL(X)χjR(Y ) (104)

***What was the story with n = 2?

Expanding the character for V ⊗n
F

χn
F =

[

P (1− s2)s
]n

= P (1− s2)nsn
∞
∑

q=0

sq
∑

ΛL,ΛR,Λ2⊢q

∑

λ1⊢n

dλ1 mult(V ⊗q
H , λ1 ⊗ Λ2)C(ΛL,ΛR,Λ2)χΛL

(X)χΛR
(Y )

= Psn
n
∑

p=0

(−1)ps2p
(

n

p

) ∞
∑

q=0

sq
∑

ΛL,ΛR,Λ2⊢q

∑

λ1⊢n

dλ1 mult(V ⊗q
H , λ1 ⊗ Λ2)C(ΛL,ΛR,Λ2)χΛL

(X)χΛR
(Y ) (105)

Now make the crucial step of identifying the binomial coefficient with the antisymmetric product of Vnat’s that

appears in the expansion of VB in (99)

(

n

p

)

= dim [1p](V ◦p
nat) (106)

Collect powers of sk where k = 2p+ q

Psn
∞
∑

k=0

sk
n
∑

p=0

(−1)pd[anti nat⊗p]

∑

ΛL,ΛR,Λ2⊢k−2p

∑

λ1⊢n

dλ1 mult(V ⊗k−2p
H , λ1 ⊗ Λ2)C(ΛL,ΛR,Λ2)χΛL

(X)χΛR
(Y ) (107)

Obviously the summand vanishes if k− 2p < 0. We see that each time we increase p we drop the number of boxes

available for the ΛL ⊗ ΛR inner product by two and increase the number of anti-symmetrised Vnat by one.

Next take the tensor product V[anti nat⊗p] ⊗ Vλ1

d[anti nat⊗p]dλ1 =
∑

λ⊢n

C([anti nat⊗p], λ1, λ)dλ (108)

and rearrange

χn
F =Psn

∞
∑

k,jL,jR=0

skχjL(X)χjR(Y )
∑

λ⊢n

dλ

n
∑

p=0

(−1)p
∑

λ1⊢n

C([anti nat⊗p], λ1, λ)
∑

Λ2⊢k−2p

mult(V ⊗k−2p
H , λ1 ⊗ Λ2)

C (ΛL = {k − 2p, jL},ΛR = {k − 2p, jR},Λ2) (109)

What is really going on here? We take the original Vλ with EoM and for each p we are removing some of the

λ, via anti
(

V
⊗p
nat

)

= V[n−p+1,1p−1] ⊕ V[n−p,1p].

This result matches with our goal (49)

multEoM(∆ = n+ k, jL, jR, λ) =
n
∑

p=0

(−1)p
∑

λ1⊢n

C([anti nat⊗p], λ1, λ)
∑

Λ2⊢k−2p

mult(V ⊗k−2p
H , λ1 ⊗ Λ2)

C (ΛL = {k − 2p, jL},ΛR = {k − 2p, jR},Λ2) (110)

More readably we could write this

multEoM(∆, jL, jR, λ) = number of times λ appears in

n
∑

p=0

(−1)p
{

[1p](V ◦p
nat) ◦ [ΛL ⊗ ΛR] (V

⊗k−2p
H )

}

(111)
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Each time we increase p we remove a column from each of ΛL and ΛR.

If we’re not interested in the Sn multiplicity then

multEoM(∆, jL, jR) =
∑

λ

dλ multEoM(∆, jL, jR, λ)

=
n
∑

p=0

∑

K⊢k−2p

(−1)p C(ΛL ⊗ ΛR,K) Dimdnat [1
p] DimdH

K (112)

This matches (101).

5 Examples for the onshell case

5.1 Scalar: jL = jR = 0

Compare this section to its offshell equivalent in Section 3.1. In the decomposition of GL(4) reps K in (59) we

now just substitute (V ◦2
H ) with VB. However we must be aware of the alternating expansion of [t](VB) when we

enforce the GL(4) tensor products. If we now do the expansion of Sn reps we get

[

[k2 ](V
◦ k

2

B ) + (V ◦4
H ) ◦ [k−4

2 ](V
◦ k−4

2

B )

]

≤4

= [k2 ](V
◦ k

2

B ) + (V ◦4
H ) ◦ [k−4

2 ](V
◦
k−4
2

B )

−

k−6
2
∑

p=0

(−1)p[1p](V ◦p
nat) ◦

[

[k−2p
2 ]( (V ◦2

H )◦
k−2p

2 ) + (V ◦4
H ) ◦ [k−2p−4

2 ]( (V ◦2
H )◦

k−2p−4
2 )

]

>4

(113)

In the second line, just as we have done in the explicit offshell examples in Section 3.1.1, we have written the GL(4)

tensor product first as an unconstrained GL(∞) tensor product followed by the subtraction of reps with more than

4 rows.

In terms of operators the counting in (113) corresponds to the operators

B
†
h1h2

· · ·B†
h2t−1h2t

|0〉

B
†
h1h2

· · ·B†
h2t−1h2t

ǫµ1µ2µ3µ4A
†

[h1µ1
· · ·A†

h4]µ4
|0〉 (114)

This covers all independent cases where all indices are contracted.

Not that for these operators Young diagrams with more than four rows just vanish because there are only 4 µ

indices.

In this section we get sloppy with notation and write (VH) instead of (V ◦2
H ) - it should be obvious from

the number of boxes what space we’re symmetrising.

5.1.1 k = 2, jL, jR = 0

For the offshell case we have
(

⊗
)

(VH) = (VH) (115)

For the onshell case we have

VB (116)

corresponding to the operator

B
†
h1h2

|0〉 (117)

5.1.2 k = 4, jL, jR = 0

For the offshell case we have
(

⊗
)

(VH) = ( (VH)) + (VH) = (VH) + (VH) + (VH) (118)
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For the onshell case we have

(VB) + (VH) (119)

corresponding to the operators

B
†
h1h2

· · ·B†
h3h4

|0〉 and ǫµ1µ2µ3µ4A
†

[h1µ1
· · ·A†

h4]µ4
|0〉 (120)

This correctly gives the number of HWS with these quantum numbers and EoM

(n− 1)2(n− 2)(n− 3)

6
(121)

5.1.3 k = 6, jL, jR = 0

Here is where problems originally occured in Paul’s Mathematica file. That problem turned out to be generic.

For the offshell case we have

(

⊗
)

(VH) =

[

( (VH)) + (VH) ◦ (VH)

]

≤4

= (VH) + (VH) + (VH) + (VH) (122)

For the onshell case we have
[

(VB) + (VH) ◦ VB

]

≤4

= (VB) + (VH) ◦ VB − (VH) (123)

corresponding to the operators

B
†
h1h2

B
†
h3h4

B
†
h5h6

|0〉 and B
†
h1h2

ǫµ3µ4µ5µ6A
†

[h3µ3
· · ·A†

h6]µ6
|0〉 (124)

This correctly gives the number of HWS with these quantum numbers and EoM

n(n− 1)(n− 2)(n− 3)(5n2 − 21n+ 28)

144
(125)

This example shows the need for the C···
4(2T,Λ′),.., i.e the GL(4) corrected Sn Clebschs. A simple example fo

exercise (1) is to do in it this case.

5.1.4 k = 8, jL, jR = 0

From an SO(4) point of view, this can happen in two different ways

ηηηη (126)

ηηǫ (127)

One might think that

ǫǫ (128)

is a separate case, but it is one of (126) when they’re antisymmetrised.

***Clarify this.

For the offshell case we have

⊗ = + + + +

+ + (129)

The first 5 cases are (126); the last 2 are (127).

We write first 5 cases as

( ) (130)
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The last two cases are roughly

◦ ( ) (131)

But we must remember that we only allow GL(4) reps so we must remove extra stuff since

◦ ( ) = ◦
(

+
)

= + + + + (132)

Thus

ΛL ⊗ ΛR = ⊗ = ( ) + ◦ ( )− − − (133)

For the onshell case we substitute with VB .

[

(VB) + (VH) ◦ (VB)

]

≤4

= (VB) + (VH) ◦ (VB)− (VH)− (VH)− (VH) + Vnat ◦ (VH) (134)

This correctly gives the number of HWS with these quantum numbers and EoM

n(n− 1)(n− 2)(n− 3)(7n4 − 48n3 + 143n2 − 222n+ 180)

1440
(135)

5.1.5 k = 10, jL, jR = 0

For the offshell case

⊗ = + + + + +

+ + + (136)

For the onshell case
[

(VB) + (VH) ◦ (VB)

]

≤4

= (VB) + (VH) ◦ (VB)

− (VH)

− (VH)− (VH)− (VH)− (VH)− (VH)− (VH)− (VH)

+ Vnat ◦



 (VH) + (VH) + (VH)





− (Vnat) ◦ (VH) (137)

This correctly gives the number of HWS with these quantum numbers and EoM

n(n− 1)(n− 2)(n− 3)(7n6 − 63n5 + 285n4 − 825n3 + 1608n2 − 276n+ 1280)

14400
(138)
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5.1.6 k = 12, jL, jR = 0

For the offshell case

ΛL ⊗ ΛR = ⊗ = + + +

+ + + + +

+ + + + + (139)

For the onsheel case the correct way of getting this is detailed in a SAGE file.

(VB) + (VH) ◦ (VB)

− (VH)− (VH)

− (VH)− · · ·

+ Vnat ◦ (VH)

+ Vnat ◦

(

(VH) + · · ·

)

− (Vnat) ◦

(

(VH) + · · ·

)

+ (Vnat) ◦ (VH) (140)

The general formula is below.

It correctly gives dimension

n(n− 1)(n− 2)(n− 3)(11n8 − 117n7 + 702n6 − 2960n5 + 9219n4 − 21083n3 + 34588n2 − 36320n+ 21000)

302400
(141)

6 An incorrect theorem

One can expand VB and Vnat in terms of VH . One might think one could just then expand

[k2 ](VB) + (VH) ◦ [k2 − 2](VB) (142)

in terms of VH and then throw away reps with more than 4 rows. This doesn’t work, see A4 notebook 23/3/09.

One needs to ignore the [1p](Vnat) when throwing away rows, as in (113). I don’t understand why.

A π projection

In this section Young diagrams are mostly written in terms of their columns lengths, i.e. we write [2k2 , 1k1 ]T instead

of [k1 + k2, k2].

We follow the decomposition in Koike and Terada [2].

To decompose a representation K of GL(2n) into representations Λ of SO(2n) we first remove all possible

combinations of contractions η from K to get a Young diagram Λ′. Then we project it to an n-row representation

Λ of SO(2n) with π.

K =
⊕

2T ,Λ′

g(2T,Λ′;K) π(Λ′) =
⊕

Λ

dimVK,Λ Λ (143)
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We have summed over even partitions 2T which correspond to contractions η.

The projection π works as follows

• List the l column lengths of Λ′.

• Fold the columns up at n+ i− 1, where i ∈ {1, . . . l} labels each column. Define ~k after cancelling folded with

unfolded boxes. For SO(4), i.e. n = 2, this means that if the first column is of length 4, replace it with one

of length k1 = 0; if the first column is 3, replace it by k1 = 1; if the second column is 4 replace it by k2 = 2.

• Define ~t by ti = ki − i+ 1.

• Define ~T by re-ordering ~t so that Tj = tσ(i) for some permutation σ ∈ Sl and n ≥ T1 > T2 > · · · > Tl.

• Define ~µ by µi = Ti + i − 1. These are the column lengths of Λ = π(Λ′).

• It appears with a sign given by the sign of the permutation σ.

As an example take Λ′ = [6, 5, 3, 3] = [4, 4, 4, 2, 2, 1]T for n = 2 and project it to Λ of SO(4).

Λ′ = (144)

Folding up we get ~k = (0, 2, 4, 2, 2, 1). Applying the subtraction we get ~t = (0, 1, 2,−1,−2,−4). Rearranging by

size we get T = (2, 1, 0,−1,−2,−4) and σ = (13). Finally doing the addition Λ = −[2, 2, 2, 2, 2, 1]T where the sign

is the sign of the permutation σ = (13).

Diagrams with two rows left the same

π([2k2 , 1k1 ]T ) = [2k2 , 1k1 ]T (145)

for k1, k2 ≥ 0.

For diagrams with three rows

π([3, 1k]T ) = [1k+1]T

π([3, 2, ∗]T ) = 0

π([3, 3, 2k2 , 1k1 ]T ) = −[2k2+2, 1k1 ]T

π([3, 3, 3, ∗]T ) = 0 (146)

for k, k1, k2 ≥ 0. ∗ represents any column lengths that give a legitimate Young diagram.

The first line is pretty intuitive. A column of length 3 along with k columns of length 1 is replaced by a new

Young diagram where we have k + 1 columns of length 1. Equivalently the projected Young diagram has a row of

length [k + 1]. Note the sign in the third line.

For diagrams with four rows the non-zero projections are

π([4]T ) = [0]T = 1 dim. rep.

π([4, 2, 1k]T ) = −[1k+2]T

π([4, 3, 1k]T ) = −[2, 1k+1]T

π([4, 3, 3, 2k2 , 1k1 ]T ) = [2k2+3, 1k1 ]T

π([4, 4, 1k]T ) = −[1k+2]T

π([4, 4, 4, 2k2 , 1k1 ]T ) = −[2k2+3, 1k1 ]T (147)

for k, k1, k2 ≥ 0.

A.1 inverses of π projection

π−1([0]T ) = {(+)[0]T , (+)[4]T } (148)
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π−1([1a]T ) =(+)[1a]T

(+)[3, 1a−1]T

(−)[4, 2, 1a−2]T

(−)[4, 4, 1a−2]T (149)

π−1([2, 1a]T ) =(+)[2, 1a]T

(−)[4, 3, 1a−1]T (150)

π−1([2, 2, 1a]T ) =(+)[2, 2, 1a]T

(−)[3, 3, 1a]T (151)

π−1([2a2+3, 1a1 ]T ) =(+)[2a2+3, 1a1 ]T

(−)[3, 3, 2a2+1, 1a1 ]T

(+)[4, 3, 3, 2a2, 1a1 ]T

(−)[4, 4, 4, 2a2, 1a1 ]T (152)

for a, a1, a2 ≥ 0.

B π̃ projection

The non-zero π̃ projections are those that “make sense”

π̃([2k2 , 1k1 ]T ) = [2k2 , 1k1 ]T

π̃([3, 1k]T ) = [1k+1]T

π̃([4]T ) = [0]T ≡ 1 (153)

B.1 Inverses of π̃ projection

π̃−1([0]T ) =[0]T

[4]T (154)

π̃−1([1a]T ) =[1a]T

[3, 1a−1]T (155)

π̃−1([2b, 1c]T ) =[2b, 1c]T (156)

for a, b ≥ 1, c ≥ 0.

C Clebsch-Gordan identities

C.1 V ⊗(n1+n2)

Suppose we have a decomposition of the fundamental V of GL(M)

V ⊗n =
⊕

Λ∈P (n,M)

V Sn

Λ ⊗ V
GL(M)
Λ (157)

with Clebsch-Gordan

C
µ1···µn

Λ,MΛ,aΛ
(158)
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Suppose we want to decompose this into n = n1 + n2

V ⊗n = V ⊗n1 ⊗ V ⊗n2 =





⊕

Λ1∈P (n1,M)

V Sn

Λ1
⊗ V

GL(M)
Λ1



⊗





⊕

Λ2∈P (n2,M)

V Sn

Λ2
⊗ V

GL(M)
Λ2



 (159)

The Clebsch-Gordan coefficients are related by

C
µ1···µn

Λ,MΛ,aΛ
=
∑

Λ1,Λ2

∑

aΛ1 ,aΛ2

∑

MΛ1 ,MΛ2

∑

τ∈g(Λ1,Λ2;Λ)

C
aΛ1 ,aΛ2
aΛ,τ C

MΛ1 ,MΛ2

MΛ,τ C
µ1···µn1

Λ1,MΛ1 ,aΛ1
C

µn1+1···µn

Λ2,MΛ2 ,aΛ2
(160)

C
MΛ1 ,MΛ2

MΛ,τ is the GL(M) Clebsch-Gordan; C
aΛ1 ,aΛ2
aΛ,τ is the Sn outer product.

C.2 Sym(W⊗k)

Consider Sym(W⊗k) where W = V1 ⊗ V2 and V1 is the fundamental rep of GL(M) and V2 of GL(M ′). A

representative would be

Ah1µ1 · · ·Ahkµk
(161)

where the Ahiµi
all commute.

We can consider W as the fundamental rep of GL(MM ′) so that

Sym(W⊗k) = V
GL(MM ′)
[k] (162)

The Clebsch-Gordan for this is

C
h1µ1···hkµk

[k],M[k]
(163)

However, decomposing in terms of GL(M) and GL(M ′) separately we have

V ⊗k
1 =

⊕

Λ1∈P (k,M)

V Sk

Λ1
⊗ V

GL(M)
Λ1

(164)

with Clebsch-Gordan coefficient

Ch1···hk

Λ1,MΛ1 ,aΛ1
(165)

and

V ⊗k
2 =

⊕

Λ2∈P (n,M ′)

V Sk

Λ2
⊗ V

GL(M ′)
Λ2

(166)

with Clebsch-Gordan coefficient

C
µ1···µk

Λ2,MΛ2 ,mΛ2
(167)

Given the Sk invariance of Sym(W⊗k) we must have for the Sk inner product

[k] ∈ Λ1 ⊗ Λ2 (168)

which forces Λ1 = Λ2 and we must sum over the Sk states aΛ1 = aΛ2 . So that

∣

∣[k],M[k]

〉

= C
h1µ1···hkµk

[k],M[k]
=
∑

Λ1

∑

aΛ1

C
[k],M[k]

Λ1,MΛ1 ,M
′
Λ1

Ch1···hk

Λ1,MΛ1 ,aΛ1
C

µ1···µk

Λ1,M
′
Λ1

,aΛ1
(169)

Counting-wise this is

DimMM ′ [k] =
∑

Λ1∈P (k,min(M,M ′))

DimMΛ1DimM ′Λ1 (170)
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C.3 Sym(W⊗2t+k′)

We want to combine Appendix Sections C.2 and C.1. First we do the split

W⊗2t+k′

→ V ⊗2t+k′

1 ⊗ V ⊗2t+k′

2 (171)

so that

C
h1µ1···hkµk

[k],M[k]
=

∑

K∈P (k,min(M,M ′))

∑

aK

Ch1···hk

K,MK ,aK
C

µ1···µk

K,M ′
K
,aK

(172)

Then split each tensor into k = 2t+ k′ according to Appendix Section C.1

C
h1µ1···hkµk

[k],M[k]
=

∑

K∈P (k,min(M,M ′))

∑

aK

∑

K1,K2

∑

aK1 ,aK2

∑

MK1 ,MK2

∑

τ∈g(K1,K2;K)

C
aK1 ,aK2
aK ,τ C

MK1 ,MK2

MK ,τ Ch1···h2t

K1,MK1 ,aK1
C

h2t+1···hk

K2,MK2 ,aK2

∑

Λ1,Λ2

∑

aΛ1 ,aΛ2

∑

MΛ1 ,MΛ2

∑

τ ′∈g(Λ1,Λ2;K)

C
aΛ1 ,aΛ2

aK ,τ ′ C
MΛ1 ,MΛ2

M ′
K
,τ ′ C

µ1···µ2t

Λ1,MΛ1 ,aΛ1
C

µ2t+1···µk

Λ2,MΛ2 ,aΛ2
(173)

Next we use a crucial branching coefficient identity

∑

aK

C
aK1 ,aK2
aK ,τ C

aΛ1 ,aΛ2

aK ,τ ′ = δK1Λ1δK2Λ2δaK1aΛ1
δaK2aΛ2

δττ ′ (174)

which can be seen using bra-ket notation. This greatly simplifies our equation to

C
h1µ1···hkµk

[k],M[k]
=

∑

K∈P (k,min(M,M ′))

∑

K1,K2

∑

aK1 ,aK2

∑

MK1 ,MK2

∑

M ′
K1

,M ′
K2

∑

τ∈g(K1,K2;K)

C
MK1 ,MK2

MK ,τ Ch1···h2t

K1,MK1 ,aK1
C

h2t+1···hk

K2,MK2 ,aK2

C
M ′

K1
,M ′

K2

M ′
K
,τ

C
µ1···µ2t

K1,M
′
K1

,aK1
C

µ2t+1···µk

K2,M
′
K2

,aK2
(175)
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