Reducing partition algebras
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1 The problem

Consider a vector of n numbers & = {z1,x9,...2,}. This has a natural action of the symmetric
group: for o € S,

Ti > To() (1)
We will call this n-dimensional representation the natural representation of S, written V.37 In
the literature it is also known as the permutation representation. It happens to be reducible

VSn = Vo g V[i’il 1] but we won’t use that property here.

nat [n]
k-fold tensor products of the natural representation can be decomposed into representations of

Sy, and its Schur-Weyl dual, the partition algebra Py (n). Since there is also an action of CSy, C Py (n)
(n)

representations VHS’“ of Sy. These generically come with a (possibly zero) multiplicity, which we

will label V(5 5+)

on this space, we can further decompose each representation VAP’“ of the partition algebra into

, named such because it is somehow the rep of the commutant of .S,, x Sj. in the



space of endomorphisms of (V.57)®*,

nat
®k n
03)" - @ v
A of Sn,Pr(n)
= P vreviey W (2)

A of Sy, k of S

From another point of view we can think of & as the fundamental representation n of GL(n) or
U(n) (from physics habit we will refer to the z; as ‘fields’). Vanilla Schur-Weyl duality tells us that
if we take k-fold tensor products of the fundamental of U(n) this decomposes exactly into reps
of both U(n) and Sj, where k is a partition of k into at most n parts. Since S, is a subgroup of

)

come with exactly the same multiplicity space as we found above.

< nU(n)>®k - P Wevs

U(n) we can further decompose each representation V,@U(n into representations V)\S” of S,,. These

K of U(n),Sk
Shn C(Sn,S S
= @ wrev Ve 3)
A of Sy, Kk of Sy,
We will now seek to understand the multiplicity space V)\C,_ES"’SI“ ) from this second point of view,
i.e. decomposing VHU(n) into reps of .5,,.
We will often write interchangeably
VI ok (V) (4)

where on the RHS we mean Vn(%ﬁ symmetrised by the rep x of Sj.

In Section B below we tabulate examples of the decompositions of (Vﬁf) into irreps of Sy,;

these are worth glancing at to start with.

2 Grading U(n) reps into ‘semi-standard’ reps of S,

We can grade VHU(n) according to which fields x; appear in each U(n) state of k. Given the Young
diagram k this corresponds to filling the boxes of k with the z; so that they form semi-standard
tableaux (i.e. weakly increasing along the rows and strongly increasing down the columns).

2.1 Example: U(2) — 5, for k =2

As a simple example consider the rep H of U(2) for k = 2. This has dimension 1 and the single
state in this rep is given by the semi-standard tableau

— 1 QX2 — T2 R (5)

As a rep of Sy it is antisymmetric

\V)



so we have

va®) =y (7)

4 B

For the 3-dimensional rep (17 of U(2) we have 3 states in total

= Q1 (8)
o T Qrt+ T3 9)
o T3 ® 1 (10)

Notice that is left invariant by Ss, whereas and are transformed into each other (forming
the natural rep of S).
They decompose into Sy reps as

VDSQj — T ®Ty+ T2 @ X1 (11)
VSQZ‘ — 11 QT1+ To R X (12)
VE% = 11T — T2 T (13)
so that we get finally
U2 S S S
VDE):VDQH—F(VDQ:‘ +V ) (14)

2.2 (General story

How do we generalise this story? Suppose we are given a k-box representation x of U(n) and a
‘field content’ of py x1’s, po xa’s, ...y T,’s. p is an ordered partition of k into at most n parts,
which we will write p € OP(k,n). For example in equation ) we have p = [2,0], in ([@) we have
= [1,1] and in ([I0) we have p = [0,2]. Because these are ordered partitions, we count [2,0] and
[0, 2] separately.

The number of compatible semi-standard tableaux for a diagram of shape k is the Kostka
number K ,. This Kostka number can also be defined as the number of times x appears in the
U(k) tensor product of n totally symmetry U(k) representations [p1] @ [p2] ® - -+ & [pp]. Using the
letter g for the Littlewood-Richardson coefficient we write this

Koo = g([p], [pal, - - - [pnls k) (15)

Given an unordered partition M of k into n parts, which we write M € P(k,n), we define a
subset of the ordered partitions OPy; C OP(k,n) such that the p € OPy; correspond to M when
unordered. For example, if M = [3,1,0] then

OPy ={]3,1,0],[3,0,1},[1,3,0],10,3,1],[1,0,3],[0, 1, 3]} (16)

First non-trivial statement: the semi-standard tableaux corresponding to each set OPjy
form a (reducible) representation of S,,, which we shall call R, . Its size is given by

|Ric. | = |OPy | Ky (17)



Why is this a rep? Consider a state in VHU(n) with field content pu € OPy, ie. p; x;’s for
i€ {l,...n}. If we act on the fields with o € S,, we will get another semi-standard tableaux with
Hi Tg(;)’S, or in other words pi,-1(;) @;’s. The field content 1,1 is also in OPy. So if we act on the

fields with S,, then we are moved to another state in VHU(n) with field content also in OPy;.
Thus we haved graded V,@U(n) into reducible reps of S,

VRU(n): @ Vg:,M (18)
MeP(k,n)

For our U(2) example the Sy representation

QT
Ry, m=[2,0] ~ < - ) ~ < ., ) (19)
T2 @ T2
is decomposable into two irreps of Ss.

3 Decomposing the graded reps

n)

Now that we have partially decomposed V,@U( into a sum of reducible S,, reps Vg: L We want to

further decompose Vg"M into irreps of S,. We want to be able to write

VO =sih= @ Vi, = D D R W 0

MeP(k,n) MEP(kn) \rn

We will show in a few examples below that the integer coefficients ¢(Ry ar, A) can be described
in terms of Littlewood-Richardson coefficients.
First we must define some new quantities. M € P(k,n) can be written

M = [k™, (k — 1)™—1, ... 1™, 0m] (21)

where
k k
Z my =n and mep =k (22)
p=0 p=0

The m,, define both a partition of £ and of n.
We can use the m,, to define the size of the set O Py, which is just the multinomial coefficient

n!

0Py | = (23)

molml! ce mk!

Second non-trivial statement: Given a field content u € OPy;, my fields do not appear in
the semi-standard tableaux. These fields are invariant under the action of an S,,, on them. Thus

R, v will always have the form
= > d(Reara) Y gl [molsA) Vi (24)
aFn—mg An

where d(R, a, ) is an integer coefficient and g(a, [mol; A) is the Littlewood-Richardson coefficient
of A in the symmetric group outer product a ® [mg]. Thus the expression ([24)) has the form of a



sum of non-trivial reps of n — mg in an outer product with the trivial rep of mg. Dropping the

clumsy notation and writing R,y = Vi",, we write this

RH,M = Z d(Rli,M’ Oé) a® [mO] (25)

abFn—mg

where ® is the symmetric group outer product.

Thus we have reduced the problem to finding the coefficients d(Ry; ar, ) of the non-trivial reps
a of n —mg. This is equivalent to finding the decomposition of R, s when mg = 0.

We have no definitive form for the coefficients d(R s, «) but we will dicuss a conjecture in the
next section. Examples are tabulated up to & = 3 in Table [l and for £ = 4 in Table

In the remainder of this section we will give examples of how equation (Z3) works.

For k = ] = [1] we have n possible fields contents p, which are in the class given by M =
[1,0""!] and we have

Ryjpon-1 =[] ®[n—1]
[n] + [n —1,1] (26)

This is just the natural rep itself, compare with the result (B3]).
For k = 1] we can have M = [2,0" ]

R[2L[270n71} = [1] & [n — 1]
=[n]+[n—-1,1] (27)

and M = [1,1,0" 2]

Rpg) 11,002 = [2] ® [n — 2]
=[n]+[n—1,1]+[n —2,2] (28)
The sum of these two reps gives us the result for the decomposition of V[QU](H), cf. B3,
U(n
Vig ™ = 2[n] + 2[n = 1,1] + [n - 2,2] (29)
(note that this is the correct generalisation of our example for n = 2 in equation ([I4l), because for
n =2 we get [1] ® [1] + [2] ® [0] = 2[2] + [1, 1]).

For k = H because of the antisymmetry we can only have field contents given by M = [1,1,0"2]
for which

Ry o2 = (L1 @ [n -2
=h-11+[-21,1] (30)

This on its own gives V[zU}(n)7 cf. ([B4).
A more complicated example is kK =
For the field content M = [2,2,0"2] we read off the irreps a of S,,_,,, from Table

R. v =1[2]®[n—2]
=[n]+[n—1,1] 4 [n —2,2] (31)



K M Yoad(Re ) « 16}
0 [1,0m71] B O
. [2,0m71] B O
o | [1,1,0m77 (] EN
3 | mey g :
o | (3,077 0 O
| (21,0777 1 +H m
T | [1,1,1,0778 [TT7 T
| (21,0777 m+H T OR
H | [, 11,0 - -
@ [1,1,1,073] @ @

For M = [2,1,1,0" 3] we get

Table 1: tables up to k =3

R.v=[3B®@n-3 + [2,1]]®[n—3]

For M = [1,1,1,1,0" %] we get

Revm = (2,2] ® [n — 4]

If we add all these together we get the result

[n]+[n—1,1]+[n—2,2] + [n—3,3]
+n—-1L1+n-22+n-21,1+[n—3,2,1]

=n-221+[n—-321+[n—4,22

(33)

VIO o] +3[n — 1,1 +4[n — 2,2+ [n— 2,1,1] + [n— 3,3] + 2[n — 3,2, 1] + [n — 4,2,2] (34)

H



cf. equation (&4).

3.1 d(R,{,M, Oé)

To find the the d(Ry v, @) is equivalent to working out the decomposition of R, ys when mg = 0.

Consider the S,, character of R, ps. Working in the basis of semi-standard tableaux (SST) the
character is determined by the SST that are preserved by o (as only these appear on the diagonal
of the matrix for o)

XRy(0) = Z +{ SST preserved by o} (35)
For example, consider the SST for k = [2,2], M = [2,1,1]
B B G (36)

Each of these is preserved by the identity, so X g, 5 1, ((1)(2)(3)) = 3, which is just the dimension.
Now consider the action of o = (23). Only the field content of the first SST is preserved

(23) {3l3) = sla) = o (37)
so that xR, ., ., ((1)(23)) = 1. 3-cycles do not preserve the field content for any of the SST, so

XRiz.2) 2.1.1] ((123)) = 0. The characters thus fix Rjp 9] 21,1] as the natural representation of Ss.

The character can also be negative, as in this example

@@?z?z—? (38)

which results in XRia11),12.1.1] ((1)(23)) = —1.
From these examples we can see that in general xg, (o) is only non-zero if o preserves the
field content i.e.

XRi m (U) 7£ 0 = o€ [Sml X SmQ Xoees Smk] (39)
where [-- -] means ‘in the conjugacy class of’. This condition can be satisfied if and only if
Rept =M @A ®@ -+ A (40)

where for each p A, is a (possibly reducible) rep of Sy,,.

Note that the condition (BY) is not <, because of the multiplicity of SST with the same field
content. Take for example £ = [3,1] and M = [2,1, 1] which has K3 1] 2,1,1] = 2, i.e. two valid SST
for each field content. The permutation (23) € S3 preserves the field content of the first SST but

the result is a different valid SST

Thus XRi3,1,12,1,1] ((23)) =0.

4 Relation to plethysm

For k = 2n consider, e.g. n =3, k=6 kF 2n a rep of U(n)

g([2), 21, [215 %) = ) cuph (42)

A-n



Here |OPys| = 1 = n!/n!l. Decomposing ¢([2], [2], [2]; k) into A - n reps is equivalent to solving the
plethysm problem

A2 = 3 eonn (43)

KkH2n

5 Tensor products of the natural

It is very easy to take tensor products of V.t because
Sn Sn Sn
V)\ ® Vnat = @ Vu (44)
p=A7)*
Knock a box off A and then add it back somewhere. V)\S" itself appears with a multiplicity equal to
the number of boxes free to remove, e.g. for A = [3,2] it appears twice, for A = [2,2,2] it appears
once.

For example

[ ] [] |
Fonat =3 HH e e He 0T e Hel eddefd! (45
This gives us an expansion
VEE =P o v (46)

AFn

(n)

where the dimension of V)\P’“ , which is the multiplicity of VAS", is given by

dim V" = 1w (Py)
1
== ZS: XA(0) [xnat ()] (47)
gEon

If we break down Pj(n) — CSj then we can break V)\Pk ™ into reps V,f’C of S}, so we get

Rk
(Vn%tl> _ @ V)\Sn ® VHSk ® VA?,isn7Sk) (48)
A of Sy, Kk of Si

where the dimension of VAcésn’Sk), which is the multiplicity of VAS” ® V.2, is given by
. C(Sn,S,
dim V)\,/i W) = tryen (P\® Py)

— % Z XA(U)% Z XH(T)H(trVnM(O.’i))Ci(T) (19)

oESy TESE i
where ¢;(7) is the number of cycles in 7 of length i. We have put this formula into a computer to
obtain the examples below.
We’re often interest in expanding the VAS” for a particular k of Sk, which we’ll often write
R(VER) =3 dim vy )y (50)
AFn
For example we know that the antisymmetric product of naturals is always

[ (Viat) = [0 =k + 1,17 4 [0 — &, 17] (51)
It’s also true that for K(Vﬁf ), where k is a k-box Young diagram, the only rep of the form
[n — k,+] in k(VER) is [n — k, &].



51 k=1

Voae = [n] +[n = 1,1] (52)
O(Viat) = [n] + [n = 1,1] (53)
52 k=2
V2 = 2[n] +3[n — 1,1] + [n— 2,2 + [n — 2,1,1] (54)
I (VE2) =2[n] +2[n — 1,1] + [n — 2,2] (55)
H(Viad) = n = 1,1 + [n = 2,1,1] (56)
53 k=3
V& =5[] +10[n —1,1] +6[n—2,2] +6[n —2,1,1] + [n— 3,3] + 2[n — 3,2,1] + [n — 3,1,1,1] (57)
o (VE) =3[n] +4[n — 1,1] +2[n —2,2] + [n — 2,1,1] + [n — 3,3] (58)
[ (Viae) = [n] +3[n = 1,1] +2[n = 2,2] + 2[n — 2,1,1] + [n — 3,2, 1] (59)
@(vﬁ?) =[n—-21,1+[n-31,1,1] (60)
54 k=4
VEE =15[n] 4+ 37[n — 1,1] + 31[n — 2,2] + 31[n — 2,1, 1]
+10[n — 3,3] + 20[n — 3,2,1] +10[n — 3,1,1,1]
+n—4,4+3[n—4,3,1]+2[n—4,2,2] +3[n—4,2,1,1] + [n —4,1,1,1,1] (61)
Djjj(Vn%f) =5[n]+7n —1,1] + 5[n — 2,2] + 2[n — 2,1, 1]
+2[n—3,3]+[n—3,2,1] + [n —4,4] (62)
T (Vi) =2[n] + 7[n — 1,1] + 5[n — 2,2] + 6[n — 2, 1,1]
+2[n—-3,3]+3n—-3,2,1] +[n—3,1,1,1] + [n — 4,3,1] (63)

A (Viae) =2[0] +3[n = 1,1] +4[n — 2,2 + [n — 2,1, 1] + [n = 3,3] + 2[n — 3,2, 1] + [n — 4,2,2]
(64)

Ej(vﬁﬁ) =n—1,1] +[n—2,2] +3[n—2,1,1] +2[n — 3,2,1] + 2[n — 3,1,1,1] + [n — 4,2,1,1]
(65)

nat

E(V®4) =n—-3,1,1,1]+[n—4,1,1,1,1] (66)



K M You AR, ) 16}
[T [4,071] [ [
EEEE [3,1,0772] o+ N
o | [2,2,077 [T] EN
o | [2,1,1,0777 o+ (1L
o | 1,121,107 EEEE (11
Bﬂj [3,1,0"72] mn +H 171 OR E
HE | 22,077 B H
T | 211,07 | oo+ 2 +@ an
| 11,10 B s

F [2,2,0"2] [T [
H | [2.1,1,007 o+ Enn
HH | 11,1107 H e
Ej [2,1,1,073] mn Jﬂ @
@3 [1,1,1,1,07 4] @3 @3
E [1,1,1,1,0n%] E E

Table 2: table of £k =4

10




K M 0
BE [4,1] ] ORH
0| 3,2] | OR[
o | 3Ly | [
70 | [2,2,1] m
O | 21,11 | X
Bﬂj (3, 2] (] ORE
BE‘D (3,1,1] [(T1]
P | 221 B
P | 2Ly | FT
- B =
| 2,1,1, 1 Ej
@} 2,2,1] L1
Eﬂ 2,111 |
Ej 2,1,1,1] E

Table 3: table of kK = 5, only non-obvious examples listed
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