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1 The problem

Consider a vector of n numbers ~x = {x1, x2, . . . xn}. This has a natural action of the symmetric

group: for σ ∈ Sn

xi 7→ xσ(i) (1)

We will call this n-dimensional representation the natural representation of Sn, written V Sn

nat . In

the literature it is also known as the permutation representation. It happens to be reducible

V Sn
nat = V Sn

[n] ⊕ V Sn

[n−1,1] but we won’t use that property here.

k-fold tensor products of the natural representation can be decomposed into representations of

Sn and its Schur-Weyl dual, the partition algebra Pk(n). Since there is also an action of CSk ⊂ Pk(n)

on this space, we can further decompose each representation V
Pk(n)
λ of the partition algebra into

representations V Sk
κ of Sk. These generically come with a (possibly zero) multiplicity, which we

will label V
C(Sn,Sk)
λ,κ , named such because it is somehow the rep of the commutant of Sn ×Sk in the
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space of endomorphisms of (V Sn

nat)
⊗k.

(

V Sn

nat

)⊗k

=
⊕

λ of Sn,Pk(n)

V Sn

λ ⊗ V
Pk(n)
λ

=
⊕

λ of Sn, κ of Sk

V Sn

λ ⊗ V Sk
κ ⊗ V

C(Sn,Sk)
λ,κ (2)

From another point of view we can think of ~x as the fundamental representation n of GL(n) or

U(n) (from physics habit we will refer to the xi as ‘fields’). Vanilla Schur-Weyl duality tells us that

if we take k-fold tensor products of the fundamental of U(n) this decomposes exactly into reps κ

of both U(n) and Sk, where κ is a partition of k into at most n parts. Since Sn is a subgroup of

U(n) we can further decompose each representation V
U(n)
κ into representations V Sn

λ of Sn. These

come with exactly the same multiplicity space as we found above.

(

V
U(n)
n

)⊗k

=
⊕

κ of U(n),Sk

V U(n)
κ ⊗ V Sk

κ

=
⊕

λ of Sn, κ of Sk

V Sn

λ ⊗ V
C(Sn,Sk)
λ,κ ⊗ V Sk

κ (3)

We will now seek to understand the multiplicity space V
C(Sn,Sk)
λ,κ from this second point of view,

i.e. decomposing V
U(n)
κ into reps of Sn.

We will often write interchangeably

V U(n)
κ ↔ κ

(

V ⊗k
nat

)

(4)

where on the RHS we mean V ⊗k
nat symmetrised by the rep κ of Sk.

In Section 5 below we tabulate examples of the decompositions of κ
(

V ⊗k
nat

)

into irreps of Sn;

these are worth glancing at to start with.

2 Grading U(n) reps into ‘semi-standard’ reps of Sn

We can grade V
U(n)
κ according to which fields xi appear in each U(n) state of κ. Given the Young

diagram κ this corresponds to filling the boxes of κ with the xi so that they form semi-standard

tableaux (i.e. weakly increasing along the rows and strongly increasing down the columns).

2.1 Example: U(2) → S2 for k = 2

As a simple example consider the rep of U(2) for k = 2. This has dimension 1 and the single

state in this rep is given by the semi-standard tableau

1
2

↔ x1 ⊗ x2 − x2 ⊗ x1 (5)

As a rep of S2 it is antisymmetric

(1)(2) 1
2

= 1
2

(12) 1
2

= 2
1

= − 1
2

(6)
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so we have

V
U(2)

= V S2 (7)

For the 3-dimensional rep of U(2) we have 3 states in total

1 1 ↔ x1 ⊗ x1 (8)

1 2 ↔ x1 ⊗ x2 + x2 ⊗ x1 (9)

2 2 ↔ x2 ⊗ x2 (10)

Notice that 1 2 is left invariant by S2, whereas 1 1 and 2 2 are transformed into each other (forming

the natural rep of S2).

They decompose into S2 reps as

V S2 ↔ x1 ⊗ x2 + x2 ⊗ x1 (11)

V S2 ↔ x1 ⊗ x1 + x2 ⊗ x2 (12)

V S2 ↔ x1 ⊗ x1 − x2 ⊗ x2 (13)

so that we get finally

V
U(2)

= V S2 +

(

V S2 + V S2

)

(14)

2.2 General story

How do we generalise this story? Suppose we are given a k-box representation κ of U(n) and a

‘field content’ of µ1 x1’s, µ2 x2’s, . . .µn xn’s. µ is an ordered partition of k into at most n parts,

which we will write µ ∈ OP (k, n). For example in equation (8) we have µ = [2, 0], in (9) we have

µ = [1, 1] and in (10) we have µ = [0, 2]. Because these are ordered partitions, we count [2, 0] and

[0, 2] separately.

The number of compatible semi-standard tableaux for a diagram of shape κ is the Kostka

number Kκ,µ. This Kostka number can also be defined as the number of times κ appears in the

U(k) tensor product of n totally symmetry U(k) representations [µ1]⊗ [µ2]⊗ · · · ⊗ [µn]. Using the

letter g for the Littlewood-Richardson coefficient we write this

Kκ,µ = g([µ1], [µ2], . . . [µn];κ) (15)

Given an unordered partition M of k into n parts, which we write M ∈ P (k, n), we define a

subset of the ordered partitions OPM ⊂ OP (k, n) such that the µ ∈ OPM correspond to M when

unordered. For example, if M = [3, 1, 0] then

OPM = {[3, 1, 0], [3, 0, 1], [1, 3, 0], [0, 3, 1], [1, 0, 3], [0, 1, 3]} (16)

First non-trivial statement: the semi-standard tableaux corresponding to each set OPM

form a (reducible) representation of Sn, which we shall call Rκ,M . Its size is given by

|Rκ,M | = |OPM |Kκ,M (17)
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Why is this a rep? Consider a state in V
U(n)
κ with field content µ ∈ OPM , i.e. µi xi’s for

i ∈ {1, . . . n}. If we act on the fields with σ ∈ Sn we will get another semi-standard tableaux with

µi xσ(i)’s, or in other words µσ−1(i) xi’s. The field content µσ−1 is also in OPM . So if we act on the

fields with Sn then we are moved to another state in V
U(n)
κ with field content also in OPM .

Thus we haved graded V
U(n)
κ into reducible reps of Sn

V U(n)
κ =

⊕

M∈P (k,n)

V Sn

Rκ,M
(18)

For our U(2) example the S2 representation

Rκ=[2],M=[2,0] ∼

(

1 1

2 2

)

∼

(

x1 ⊗ x1

x2 ⊗ x2

)

(19)

is decomposable into two irreps of S2.

3 Decomposing the graded reps

Now that we have partially decomposed V
U(n)
κ into a sum of reducible Sn reps V Sn

Rκ,M
, we want to

further decompose V Sn

Rκ,M
into irreps of Sn. We want to be able to write

V U(n)
κ = κ(V ⊗k

nat ) =
⊕

M∈P (k,n)

V Sn

Rκ,M
=

⊕

M∈P (k,n)

⊕

λ⊢n

c(Rκ,M , λ) V Sn

λ (20)

We will show in a few examples below that the integer coefficients c(Rκ,M , λ) can be described

in terms of Littlewood-Richardson coefficients.

First we must define some new quantities. M ∈ P (k, n) can be written

M = [kmk , (k − 1)mk−1 , . . . , 1m1 , 0m0 ] (21)

where
k
∑

p=0

mp = n and
k
∑

p=0

pmp = k (22)

The mp define both a partition of k and of n.

We can use the mp to define the size of the set OPM , which is just the multinomial coefficient

|OPM | =
n!

m0!m1! · · ·mk!
(23)

Second non-trivial statement: Given a field content µ ∈ OPM , m0 fields do not appear in

the semi-standard tableaux. These fields are invariant under the action of an Sm0 on them. Thus

Rκ,M will always have the form

V Sn

Rκ,M
=

∑

α⊢n−m0

d(Rκ,M , α)
∑

λ⊢n

g(α, [m0];λ) V Sn

λ (24)

where d(Rκ,M , α) is an integer coefficient and g(α, [m0];λ) is the Littlewood-Richardson coefficient

of λ in the symmetric group outer product α ⊗ [m0]. Thus the expression (24) has the form of a
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sum of non-trivial reps of n − m0 in an outer product with the trivial rep of m0. Dropping the

clumsy notation and writing Rκ,M ≡ V Sn

Rκ,M
we write this

Rκ,M =
∑

α⊢n−m0

d(Rκ,M , α) α ⊗ [m0] (25)

where ⊗ is the symmetric group outer product.

Thus we have reduced the problem to finding the coefficients d(Rκ,M , α) of the non-trivial reps

α of n − m0. This is equivalent to finding the decomposition of Rκ,M when m0 = 0.

We have no definitive form for the coefficients d(Rκ,M , α) but we will dicuss a conjecture in the

next section. Examples are tabulated up to k = 3 in Table 1 and for k = 4 in Table 2.

In the remainder of this section we will give examples of how equation (25) works.

For κ = = [1] we have n possible fields contents µ, which are in the class given by M =

[1, 0n−1] and we have

R[1],[1,0n−1] = [1] ⊗ [n − 1]

= [n] + [n − 1, 1] (26)

This is just the natural rep itself, compare with the result (53).

For κ = we can have M = [2, 0n−1]

R[2],[2,0n−1] = [1] ⊗ [n − 1]

= [n] + [n − 1, 1] (27)

and M = [1, 1, 0n−2]

R[2],[1,1,0n−2] = [2] ⊗ [n − 2]

= [n] + [n − 1, 1] + [n − 2, 2] (28)

The sum of these two reps gives us the result for the decomposition of V
U(n)
[2] , cf. (55),

V
U(n)
[2] = 2[n] + 2[n − 1, 1] + [n − 2, 2] (29)

(note that this is the correct generalisation of our example for n = 2 in equation (14), because for

n = 2 we get [1] ⊗ [1] + [2] ⊗ [0] = 2[2] + [1, 1]).

For κ = because of the antisymmetry we can only have field contents given by M = [1, 1, 0n−2]

for which

R[1,1],[1,1,0n−2] = [1, 1] ⊗ [n − 2]

= [n − 1, 1] + [n − 2, 1, 1] (30)

This on its own gives V
U(n)
[2] , cf. (56).

A more complicated example is κ = .

For the field content M = [2, 2, 0n−2] we read off the irreps α of Sn−m0 from Table 2

Rκ,M = [2] ⊗ [n − 2]

= [n] + [n − 1, 1] + [n − 2, 2] (31)
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κ M
∑

α d(Rκ,M , α) α β

[1, 0n−1]

[2, 0n−1]

[1, 1, 0n−2]

[1, 1, 0n−2]

[3, 0n−1]

[2, 1, 0n−2] +

[1, 1, 1, 0n−3]

[2, 1, 0n−2] + OR

[1, 1, 1, 0n−3]

[1, 1, 1, 0n−3]

Table 1: tables up to k = 3

For M = [2, 1, 1, 0n−3 ] we get

Rκ,M = [3] ⊗ [n − 3] + [2, 1] ⊗ [n − 3]

= [n] + [n − 1, 1] + [n − 2, 2] + [n − 3, 3]

+ [n − 1, 1] + [n − 2, 2] + [n − 2, 1, 1] + [n − 3, 2, 1] (32)

For M = [1, 1, 1, 1, 0n−4 ] we get

Rκ,M = [2, 2] ⊗ [n − 4]

= [n − 2, 2] + [n − 3, 2, 1] + [n − 4, 2, 2] (33)

If we add all these together we get the result

V
U(n)

= 2[n] + 3[n − 1, 1] + 4[n − 2, 2] + [n − 2, 1, 1] + [n − 3, 3] + 2[n − 3, 2, 1] + [n − 4, 2, 2] (34)
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cf. equation (64).

3.1 d(Rκ,M , α)

To find the the d(Rκ,M , α) is equivalent to working out the decomposition of Rκ,M when m0 = 0.

Consider the Sn character of Rκ,M . Working in the basis of semi-standard tableaux (SST) the

character is determined by the SST that are preserved by σ (as only these appear on the diagonal

of the matrix for σ)

χRκ,M
(σ) =

∑

±{ SST preserved by σ} (35)

For example, consider the SST for κ = [2, 2], M = [2, 1, 1]

1 1
2 3

1 2
2 3

1 2
3 3

(36)

Each of these is preserved by the identity, so χR[2,2],[2,1,1]
((1)(2)(3)) = 3, which is just the dimension.

Now consider the action of σ = (23). Only the field content of the first SST is preserved

(23) 1 1
2 3

= 1 1
3 2

= 1 1
2 3

(37)

so that χR[2,2],[2,1,1]
((1)(23)) = 1. 3-cycles do not preserve the field content for any of the SST, so

χR[2,2],[2,1,1]
((123)) = 0. The characters thus fix R[2,2],[2,1,1] as the natural representation of S3.

The character can also be negative, as in this example

(23)
1 1
2
3

=
1 1
3
2

= −
1 1
2
3

(38)

which results in χR[2,1,1],[2,1,1]
((1)(23)) = −1.

From these examples we can see that in general χRκ,M
(σ) is only non-zero if σ preserves the

field content i.e.

χRκ,M
(σ) 6= 0 ⇒ σ ∈ [Sm1 × Sm2 × · · ·Smk

] (39)

where [· · · ] means ‘in the conjugacy class of’. This condition can be satisfied if and only if

Rκ,M = λ1 ⊗ λ2 ⊗ · · ·λk (40)

where for each p λp is a (possibly reducible) rep of Smp .

Note that the condition (39) is not ⇐, because of the multiplicity of SST with the same field

content. Take for example κ = [3, 1] and M = [2, 1, 1] which has K[3,1],[2,1,1] = 2, i.e. two valid SST

for each field content. The permutation (23) ∈ S3 preserves the field content of the first SST but

the result is a different valid SST

(23) 1 1 2
3

= 1 1 3
2

(41)

Thus χR[3,1],[2,1,1]
((23)) = 0.

4 Relation to plethysm

For k = 2n consider, e.g. n = 3, k = 6 κ ⊢ 2n a rep of U(n)

g([2], [2], [2];κ) =
∑

λ⊢n

cκ,λλ (42)
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Here |OPM | = 1 = n!/n!. Decomposing g([2], [2], [2];κ) into λ ⊢ n reps is equivalent to solving the

plethysm problem

λ([2]⊗n) =
∑

κ⊢2n

cκ,λκ (43)

5 Tensor products of the natural

It is very easy to take tensor products of Vnat because

V Sn

λ ⊗ V Sn

nat =
⊕

µ=(λ−)+

V Sn
µ (44)

Knock a box off λ and then add it back somewhere. V Sn

λ itself appears with a multiplicity equal to

the number of boxes free to remove, e.g. for λ = [3, 2] it appears twice, for λ = [2, 2, 2] it appears

once.

For example

⊗ nat = 3 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ (45)

This gives us an expansion

V ⊗k
nat =

⊕

λ⊢n

V Sn

λ ⊗ V
Pk(n)
λ (46)

where the dimension of V
Pk(n)
λ , which is the multiplicity of V Sn

λ , is given by

dimV
Pk(n)
λ = tr

V ⊗k
nat

(Pλ)

=
1

n!

∑

σ∈Sn

χλ(σ) [χnat(σ)]k (47)

If we break down Pk(n) → CSk then we can break V
Pk(n)
λ into reps V Sk

κ of Sk so we get
(

V Sn

nat

)⊗k

=
⊕

λ of Sn, κ of Sk

V Sn

λ ⊗ V Sk
κ ⊗ V

C(Sn,Sk)
λ,κ (48)

where the dimension of V
C(Sn,Sk)
λ,κ , which is the multiplicity of V Sn

λ ⊗ V Sk
κ , is given by

dim V
C(Sn,Sk)
λ,κ = tr

V ⊗k
nat

(Pλ ⊗ Pκ)

=
1

n!

∑

σ∈Sn

χλ(σ)
1

k!

∑

τ∈Sk

χκ(τ)
∏

i

(trVnat(σ
i))ci(τ) (49)

where ci(τ) is the number of cycles in τ of length i. We have put this formula into a computer to

obtain the examples below.

We’re often interest in expanding the V Sn

λ for a particular κ of Sk, which we’ll often write

κ(V ⊗k
nat ) =

∑

λ⊢n

dim V
C(Sn,Sk)
λ,κ V Sn

λ (50)

For example we know that the antisymmetric product of naturals is always

[1k](V ⊗k
nat ) ≡ [n − k + 1, 1k−1] + [n − k, 1k] (51)

It’s also true that for κ(V ⊗k
nat ), where κ is a k-box Young diagram, the only rep of the form

[n − k, ∗] in κ(V ⊗k
nat ) is [n − k, κ].
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5.1 k = 1

V ⊗1
nat = [n] + [n − 1, 1] (52)

(V ⊗1
nat ) = [n] + [n − 1, 1] (53)

5.2 k = 2

V ⊗2
nat = 2[n] + 3[n − 1, 1] + [n − 2, 2] + [n − 2, 1, 1] (54)

(V ⊗2
nat ) = 2[n] + 2[n − 1, 1] + [n − 2, 2] (55)

(V ⊗2
nat ) = [n − 1, 1] + [n − 2, 1, 1] (56)

5.3 k = 3

V ⊗3
nat = 5[n] + 10[n− 1, 1] + 6[n− 2, 2] + 6[n− 2, 1, 1] + [n− 3, 3] + 2[n− 3, 2, 1] + [n− 3, 1, 1, 1] (57)

(V ⊗3
nat ) = 3[n] + 4[n − 1, 1] + 2[n − 2, 2] + [n − 2, 1, 1] + [n − 3, 3] (58)

(V ⊗3
nat ) = [n] + 3[n − 1, 1] + 2[n − 2, 2] + 2[n − 2, 1, 1] + [n − 3, 2, 1] (59)

(V ⊗3
nat ) = [n − 2, 1, 1] + [n − 3, 1, 1, 1] (60)

5.4 k = 4

V ⊗4
nat =15[n] + 37[n − 1, 1] + 31[n − 2, 2] + 31[n − 2, 1, 1]

+ 10[n − 3, 3] + 20[n − 3, 2, 1] + 10[n − 3, 1, 1, 1]

+ [n − 4, 4] + 3[n − 4, 3, 1] + 2[n − 4, 2, 2] + 3[n − 4, 2, 1, 1] + [n − 4, 1, 1, 1, 1] (61)

(V ⊗4
nat ) =5[n] + 7[n − 1, 1] + 5[n − 2, 2] + 2[n − 2, 1, 1]

+ 2[n − 3, 3] + [n − 3, 2, 1] + [n − 4, 4] (62)

(V ⊗4
nat ) =2[n] + 7[n − 1, 1] + 5[n − 2, 2] + 6[n − 2, 1, 1]

+ 2[n − 3, 3] + 3[n − 3, 2, 1] + [n − 3, 1, 1, 1] + [n − 4, 3, 1] (63)

(V ⊗4
nat ) =2[n] + 3[n − 1, 1] + 4[n − 2, 2] + [n − 2, 1, 1] + [n − 3, 3] + 2[n − 3, 2, 1] + [n − 4, 2, 2]

(64)

(V ⊗4
nat ) =[n − 1, 1] + [n − 2, 2] + 3[n − 2, 1, 1] + 2[n − 3, 2, 1] + 2[n − 3, 1, 1, 1] + [n − 4, 2, 1, 1]

(65)

(V ⊗4
nat ) =[n − 3, 1, 1, 1] + [n − 4, 1, 1, 1, 1] (66)
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κ M
∑

α d(Rκ,M , α) α β

[4, 0n−1]

[3, 1, 0n−2] +

[2, 2, 0n−2]

[2, 1, 1, 0n−3] +

[1, 1, 1, 1, 0n−4 ]

[3, 1, 0n−2] + OR

[2, 2, 0n−2]

[2, 1, 1, 0n−3] + 2 +

[1, 1, 1, 1, 0n−4 ]

[2, 2, 0n−2]

[2, 1, 1, 0n−3] +

[1, 1, 1, 1, 0n−4 ]

[2, 1, 1, 0n−3] +

[1, 1, 1, 1, 0n−4 ]

[1, 1, 1, 1, 0n−4 ]

Table 2: table of k = 4
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κ M β

[4, 1] OR

[3, 2] OR

[3, 1, 1]

[2, 2, 1]

[2, 1, 1, 1]

[3, 2] OR

[3, 1, 1]

[2, 2, 1]

[2, 1, 1, 1]

[3, 1, 1]

[2, 2, 1]

[2, 1, 1, 1]

[2, 2, 1]

[2, 1, 1, 1]

[2, 1, 1, 1]

Table 3: table of k = 5, only non-obvious examples listed
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