Reducing partition algebras

February 10, 2010

Contents

1	The problem	1
2	Grading $U(n)$ reps into 'semi-standard' reps of S_n 2.1 Example: $U(2) \rightarrow S_2$ for $k = 2$ 2.2 General story	
3	Decomposing the graded reps 3.1 $d(R_{\kappa,M}, \alpha)$	4 7
4	Relation to plethysm	7
5	Tensor products of the natural $5.1 k = 1 \dots \dots$	9 9
	5.4 $k = 4 \dots \dots$	9

1 The problem

Consider a vector of n numbers $\vec{x} = \{x_1, x_2, \dots, x_n\}$. This has a natural action of the symmetric group: for $\sigma \in S_n$

$$x_i \mapsto x_{\sigma(i)} \tag{1}$$

We will call this *n*-dimensional representation the *natural* representation of S_n , written $V_{\text{nat}}^{S_n}$. In the literature it is also known as the permutation representation. It happens to be reducible $V_{\text{nat}}^{S_n} = V_{[n]}^{S_n} \oplus V_{[n-1,1]}^{S_n}$ but we won't use that property here. *k*-fold tensor products of the natural representation can be decomposed into representations of

k-fold tensor products of the natural representation can be decomposed into representations of S_n and its Schur-Weyl dual, the partition algebra $P_k(n)$. Since there is also an action of $\mathbb{C}S_k \subset P_k(n)$ on this space, we can further decompose each representation $V_{\lambda}^{P_k(n)}$ of the partition algebra into representations $V_{\kappa}^{S_k}$ of S_k . These generically come with a (possibly zero) multiplicity, which we will label $V_{\lambda,\kappa}^{C(S_n,S_k)}$, named such because it is somehow the rep of the commutant of $S_n \times S_k$ in the

space of endomorphisms of $(V_{\text{nat}}^{S_n})^{\otimes k}$.

$$\begin{pmatrix} V_{\text{nat}}^{S_n} \end{pmatrix}^{\otimes k} = \bigoplus_{\lambda \text{ of } S_n, P_k(n)} V_{\lambda}^{S_n} \otimes V_{\lambda}^{P_k(n)}$$

$$= \bigoplus_{\lambda \text{ of } S_n, \kappa \text{ of } S_k} V_{\lambda}^{S_n} \otimes V_{\kappa}^{S_k} \otimes V_{\lambda,\kappa}^{C(S_n,S_k)}$$

$$(2)$$

From another point of view we can think of \vec{x} as the fundamental representation **n** of GL(n) or U(n) (from physics habit we will refer to the x_i as 'fields'). Vanilla Schur-Weyl duality tells us that if we take k-fold tensor products of the fundamental of U(n) this decomposes exactly into reps κ of both U(n) and S_k , where κ is a partition of k into at most n parts. Since S_n is a subgroup of U(n) we can further decompose each representation $V_{\kappa}^{U(n)}$ into representations $V_{\lambda}^{S_n}$ of S_n . These come with exactly the same multiplicity space as we found above.

$$\begin{pmatrix} V_{\mathbf{n}}^{U(n)} \end{pmatrix}^{\otimes k} = \bigoplus_{\kappa \text{ of } U(n), S_{k}} V_{\kappa}^{U(n)} \otimes V_{\kappa}^{S_{k}}$$

$$= \bigoplus_{\lambda \text{ of } S_{n}, \kappa \text{ of } S_{k}} V_{\lambda}^{S_{n}} \otimes V_{\lambda,\kappa}^{C(S_{n},S_{k})} \otimes V_{\kappa}^{S_{k}}$$

$$(3)$$

We will now seek to understand the multiplicity space $V_{\lambda,\kappa}^{C(S_n,S_k)}$ from this second point of view, i.e. decomposing $V_{\kappa}^{U(n)}$ into reps of S_n .

We will often write interchangeably

$$V_{\kappa}^{U(n)} \leftrightarrow \kappa \left(V_{\text{nat}}^{\otimes k} \right) \tag{4}$$

where on the RHS we mean $V_{\text{nat}}^{\otimes k}$ symmetrised by the rep κ of S_k .

In Section 5 below we tabulate examples of the decompositions of $\kappa \left(V_{\text{nat}}^{\otimes k} \right)$ into irreps of S_n ; these are worth glancing at to start with.

2 Grading U(n) reps into 'semi-standard' reps of S_n

We can grade $V_{\kappa}^{U(n)}$ according to which fields x_i appear in each U(n) state of κ . Given the Young diagram κ this corresponds to filling the boxes of κ with the x_i so that they form semi-standard tableaux (i.e. weakly increasing along the rows and strongly increasing down the columns).

2.1 Example: $U(2) \rightarrow S_2$ for k = 2

As a simple example consider the rep \Box of U(2) for k = 2. This has dimension 1 and the single state in this rep is given by the semi-standard tableau

$$\frac{1}{2} \quad \leftrightarrow \quad x_1 \otimes x_2 - x_2 \otimes x_1 \tag{5}$$

As a rep of S_2 it is antisymmetric

$$\begin{array}{ccc} (1)(2) & \frac{1}{2} = \frac{1}{2} \\ (12) & \frac{1}{2} = \frac{2}{1} = - & \frac{1}{2} \end{array}$$
(6)

so we have

$$V_{\square}^{U(2)} = V_{\square}^{S_2} \tag{7}$$

For the 3-dimensional rep \square of U(2) we have 3 states in total

$$11 \leftrightarrow x_1 \otimes x_1 \tag{8}$$

$$12 \quad \leftrightarrow \quad x_1 \otimes x_2 + x_2 \otimes x_1 \tag{9}$$

$$\boxed{22} \quad \leftrightarrow \quad x_2 \otimes x_2 \tag{10}$$

Notice that $\boxed{12}$ is left invariant by S_2 , whereas $\boxed{11}$ and $\boxed{22}$ are transformed into each other (forming the natural rep of S_2).

They decompose into S_2 reps as

$$V_{\square}^{S_2} \quad \leftrightarrow \quad x_1 \otimes x_1 + x_2 \otimes x_2 \tag{12}$$

so that we get finally

$$V_{\square}^{U(2)} = V_{\square}^{S_2} + \left(V_{\square}^{S_2} + V_{\square}^{S_2}\right) \tag{14}$$

2.2 General story

How do we generalise this story? Suppose we are given a k-box representation κ of U(n) and a 'field content' of $\mu_1 x_1$'s, $\mu_2 x_2$'s, $\dots \mu_n x_n$'s. μ is an ordered partition of k into at most n parts, which we will write $\mu \in OP(k, n)$. For example in equation (8) we have $\mu = [2, 0]$, in (9) we have $\mu = [1, 1]$ and in (10) we have $\mu = [0, 2]$. Because these are ordered partitions, we count [2, 0] and [0, 2] separately.

The number of compatible semi-standard tableaux for a diagram of shape κ is the Kostka number $K_{\kappa,\mu}$. This Kostka number can also be defined as the number of times κ appears in the U(k) tensor product of n totally symmetry U(k) representations $[\mu_1] \otimes [\mu_2] \otimes \cdots \otimes [\mu_n]$. Using the letter g for the Littlewood-Richardson coefficient we write this

$$K_{\kappa,\mu} = g([\mu_1], [\mu_2], \dots [\mu_n]; \kappa)$$
(15)

Given an *unordered* partition M of k into n parts, which we write $M \in P(k, n)$, we define a subset of the ordered partitions $OP_M \subset OP(k, n)$ such that the $\mu \in OP_M$ correspond to M when unordered. For example, if M = [3, 1, 0] then

$$OP_M = \{[3,1,0], [3,0,1], [1,3,0], [0,3,1], [1,0,3], [0,1,3]\}$$
(16)

First non-trivial statement: the semi-standard tableaux corresponding to each set OP_M form a (reducible) representation of S_n , which we shall call $R_{\kappa,M}$. Its size is given by

$$|R_{\kappa,M}| = |OP_M|K_{\kappa,M} \tag{17}$$

Why is this a rep? Consider a state in $V_{\kappa}^{U(n)}$ with field content $\mu \in OP_M$, i.e. $\mu_i x_i$'s for $i \in \{1, \ldots n\}$. If we act on the fields with $\sigma \in S_n$ we will get another semi-standard tableaux with $\mu_i x_{\sigma(i)}$'s, or in other words $\mu_{\sigma^{-1}(i)} x_i$'s. The field content $\mu_{\sigma^{-1}}$ is also in OP_M . So if we act on the fields with S_n then we are moved to another state in $V_{\kappa}^{U(n)}$ with field content also in OP_M . Thus we haved graded $V_{\kappa}^{U(n)}$ into reducible reps of S_n

$$V_{\kappa}^{U(n)} = \bigoplus_{M \in P(k,n)} V_{R_{\kappa,M}}^{S_n}$$
(18)

For our U(2) example the S_2 representation

$$R_{\kappa=[2],M=[2,0]} \sim \begin{pmatrix} 1\\ 1\\ 2\\ 2 \end{pmatrix} \sim \begin{pmatrix} x_1 \otimes x_1\\ x_2 \otimes x_2 \end{pmatrix}$$
(19)

is decomposable into two irreps of S_2 .

3 Decomposing the graded reps

Now that we have partially decomposed $V_{\kappa}^{U(n)}$ into a sum of reducible S_n reps $V_{R_{\kappa,M}}^{S_n}$, we want to further decompose $V_{R_{\kappa,M}}^{S_n}$ into irreps of S_n . We want to be able to write

$$V_{\kappa}^{U(n)} = \kappa(V_{\text{nat}}^{\otimes k}) = \bigoplus_{M \in P(k,n)} V_{R_{\kappa,M}}^{S_n} = \bigoplus_{M \in P(k,n)} \bigoplus_{\lambda \vdash n} c(R_{\kappa,M},\lambda) V_{\lambda}^{S_n}$$
(20)

We will show in a few examples below that the integer coefficients $c(R_{\kappa,M},\lambda)$ can be described in terms of Littlewood-Richardson coefficients.

First we must define some new quantities. $M \in P(k, n)$ can be written

$$M = [k^{m_k}, (k-1)^{m_{k-1}}, \dots, 1^{m_1}, 0^{m_0}]$$
(21)

where

$$\sum_{p=0}^{k} m_p = n \quad \text{and} \quad \sum_{p=0}^{k} p m_p = k \tag{22}$$

The m_p define both a partition of k and of n.

We can use the m_p to define the size of the set OP_M , which is just the multinomial coefficient

$$|OP_M| = \frac{n!}{m_0! m_1! \cdots m_k!}$$
(23)

Second non-trivial statement: Given a field content $\mu \in OP_M$, m_0 fields do not appear in the semi-standard tableaux. These fields are invariant under the action of an S_{m_0} on them. Thus $R_{\kappa,M}$ will always have the form

$$V_{R_{\kappa,M}}^{S_n} = \sum_{\alpha \vdash n - m_0} d(R_{\kappa,M}, \alpha) \sum_{\lambda \vdash n} g(\alpha, [m_0]; \lambda) V_{\lambda}^{S_n}$$
(24)

where $d(R_{\kappa,M},\alpha)$ is an integer coefficient and $g(\alpha, [m_0]; \lambda)$ is the Littlewood-Richardson coefficient of λ in the symmetric group outer product $\alpha \otimes [m_0]$. Thus the expression (24) has the form of a

sum of non-trivial reps of $n - m_0$ in an outer product with the trivial rep of m_0 . Dropping the clumsy notation and writing $R_{\kappa,M} \equiv V_{R_{\kappa,M}}^{S_n}$ we write this

$$R_{\kappa,M} = \sum_{\alpha \vdash n - m_0} d(R_{\kappa,M}, \alpha) \quad \alpha \otimes [m_0]$$
⁽²⁵⁾

where \otimes is the symmetric group outer product.

Thus we have reduced the problem to finding the coefficients $d(R_{\kappa,M},\alpha)$ of the non-trivial reps α of $n - m_0$. This is equivalent to finding the decomposition of $R_{\kappa,M}$ when $m_0 = 0$.

We have no definitive form for the coefficients $d(R_{\kappa,M},\alpha)$ but we will discuss a conjecture in the next section. Examples are tabulated up to k = 3 in Table 1 and for k = 4 in Table 2.

In the remainder of this section we will give examples of how equation (25) works.

For $\kappa = \square = [1]$ we have n possible fields contents μ , which are in the class given by M = $[1, 0^{n-1}]$ and we have

$$R_{[1],[1,0^{n-1}]} = [1] \otimes [n-1]$$

= [n] + [n-1,1] (26)

This is just the natural rep itself, compare with the result (53).

For $\kappa = \square$ we can have $M = [2, 0^{n-1}]$

$$R_{[2],[2,0^{n-1}]} = [1] \otimes [n-1]$$

= [n] + [n-1,1] (27)

and $M = [1, 1, 0^{n-2}]$

$$R_{[2],[1,1,0^{n-2}]} = [2] \otimes [n-2]$$

= [n] + [n-1,1] + [n-2,2] (28)

The sum of these two reps gives us the result for the decomposition of $V_{[2]}^{U(n)}$, cf. (55),

$$V_{[2]}^{U(n)} = 2[n] + 2[n-1,1] + [n-2,2]$$
(29)

(note that this is the correct generalisation of our example for n = 2 in equation (14), because for n = 2 we get $[1] \otimes [1] + [2] \otimes [0] = 2[2] + [1, 1]).$

For $\kappa = \square$ because of the antisymmetry we can only have field contents given by $M = [1, 1, 0^{n-2}]$ for which

$$R_{[1,1],[1,1,0^{n-2}]} = [1,1] \otimes [n-2]$$

= [n-1,1] + [n-2,1,1] (30)

This on its own gives $V_{[2]}^{U(n)}$, cf. (56). A more complicated example is $\kappa = \square$. For the field content $M = [2, 2, 0^{n-2}]$ we read off the irreps α of S_{n-m_0} from Table 2

$$R_{\kappa,M} = [2] \otimes [n-2]$$

= [n] + [n-1,1] + [n-2,2] (31)

κ	M	$\sum_{\alpha} d(R_{\kappa,M},\alpha) \ \alpha$	eta	
	$[1, 0^{n-1}]$			
	$[2, 0^{n-1}]$			
	$[1, 1, 0^{n-2}]$			
8	$[1, 1, 0^{n-2}]$	Ξ	Β	
	$[3, 0^{n-1}]$			
	$[2, 1, 0^{n-2}]$			
	$[1, 1, 1, 0^{n-3}]$			
₽	$[2, 1, 0^{n-2}]$			
₽	$[1, 1, 1, 0^{n-3}]$	₽	₽	
	$[1, 1, 1, 0^{n-3}]$			

Table 1: tables up to k = 3

For $M = [2, 1, 1, 0^{n-3}]$ we get

$$R_{\kappa,M} = [3] \otimes [n-3] + [2,1] \otimes [n-3]$$

= $[n] + [n-1,1] + [n-2,2] + [n-3,3]$
+ $[n-1,1] + [n-2,2] + [n-2,1,1] + [n-3,2,1]$ (32)

For $M = [1, 1, 1, 1, 0^{n-4}]$ we get

$$R_{\kappa,M} = [2,2] \otimes [n-4]$$

= [n-2,2] + [n-3,2,1] + [n-4,2,2] (33)

If we add all these together we get the result

$$V_{\square}^{U(n)} = 2[n] + 3[n-1,1] + 4[n-2,2] + [n-2,1,1] + [n-3,3] + 2[n-3,2,1] + [n-4,2,2]$$
(34)

cf. equation (64).

3.1 $d(R_{\kappa,M},\alpha)$

To find the the $d(R_{\kappa,M},\alpha)$ is equivalent to working out the decomposition of $R_{\kappa,M}$ when $m_0 = 0$.

Consider the S_n character of $R_{\kappa,M}$. Working in the basis of semi-standard tableaux (SST) the character is determined by the SST that are preserved by σ (as only these appear on the diagonal of the matrix for σ)

$$\chi_{R_{\kappa,M}}(\sigma) = \sum \pm \{ \text{ SST preserved by } \sigma \}$$
(35)

For example, consider the SST for $\kappa = [2, 2], M = [2, 1, 1]$

Each of these is preserved by the identity, so $\chi_{R_{[2,2],[2,1,1]}}((1)(2)(3)) = 3$, which is just the dimension. Now consider the action of $\sigma = (23)$. Only the field content of the first SST is preserved

$$(23) \quad \underline{11}_{23} = \underline{11}_{32} = \underline{11}_{23} \tag{37}$$

so that $\chi_{R_{[2,2],[2,1,1]}}((1)(23)) = 1$. 3-cycles do not preserve the field content for any of the SST, so $\chi_{R_{[2,2],[2,1,1]}}((123)) = 0$. The characters thus fix $R_{[2,2],[2,1,1]}$ as the natural representation of S_3 .

The character can also be negative, as in this example

$$(23) \quad \frac{11}{\frac{2}{3}} = \frac{11}{\frac{3}{2}} = - \quad \frac{11}{\frac{2}{3}} \tag{38}$$

which results in $\chi_{R_{[2,1,1]},[2,1,1]}((1)(23)) = -1.$

From these examples we can see that in general $\chi_{R_{\kappa,M}}(\sigma)$ is only non-zero if σ preserves the field content i.e.

$$\chi_{R_{\kappa,M}}(\sigma) \neq 0 \quad \Rightarrow \quad \sigma \in [S_{m_1} \times S_{m_2} \times \cdots S_{m_k}]$$
(39)

where $[\cdots]$ means 'in the conjugacy class of'. This condition can be satisfied if and only if

$$R_{\kappa,M} = \lambda_1 \otimes \lambda_2 \otimes \cdots \otimes \lambda_k \tag{40}$$

where for each $p \lambda_p$ is a (possibly reducible) rep of S_{m_p} .

Note that the condition (39) is not \Leftarrow , because of the multiplicity of SST with the same field content. Take for example $\kappa = [3, 1]$ and M = [2, 1, 1] which has $K_{[3,1],[2,1,1]} = 2$, i.e. two valid SST for each field content. The permutation (23) $\in S_3$ preserves the field content of the first SST but the result is a different valid SST

$$(23) \quad \frac{112}{3} = \frac{113}{2} \tag{41}$$

Thus $\chi_{R_{[3,1]},[2,1,1]}((23)) = 0.$

4 Relation to plethysm

For k = 2n consider, e.g. $n = 3, k = 6 \kappa \vdash 2n$ a rep of U(n)

$$g([2], [2]; \kappa) = \sum_{\lambda \vdash n} c_{\kappa, \lambda} \lambda$$
(42)

Here $|OP_M| = 1 = n!/n!$. Decomposing $g([2], [2], [2]; \kappa)$ into $\lambda \vdash n$ reps is equivalent to solving the plethysm problem

$$\lambda([2]^{\otimes n}) = \sum_{\kappa \vdash 2n} c_{\kappa,\lambda} \kappa \tag{43}$$

5 Tensor products of the natural

It is very easy to take tensor products of $V_{\rm nat}$ because

$$V_{\lambda}^{S_n} \otimes V_{\text{nat}}^{S_n} = \bigoplus_{\mu = (\lambda^-)^+} V_{\mu}^{S_n} \tag{44}$$

Knock a box off λ and then add it back somewhere. $V_{\lambda}^{S_n}$ itself appears with a multiplicity equal to the number of boxes free to remove, e.g. for $\lambda = [3, 2]$ it appears twice, for $\lambda = [2, 2, 2]$ it appears once.

For example

This gives us an expansion

$$V_{\text{nat}}^{\otimes k} = \bigoplus_{\lambda \vdash n} V_{\lambda}^{S_n} \otimes V_{\lambda}^{P_k(n)}$$
(46)

where the dimension of $V_{\lambda}^{P_k(n)}$, which is the multiplicity of $V_{\lambda}^{S_n}$, is given by dim $V_{\lambda}^{P_k(n)}$ to (D_{λ})

$$\dim V_{\lambda}^{P_{k}(n)} = \operatorname{tr}_{V_{\operatorname{nat}}^{\otimes k}}(P_{\lambda})$$
$$= \frac{1}{n!} \sum_{\sigma \in S_{n}} \chi_{\lambda}(\sigma) \left[\chi_{\operatorname{nat}}(\sigma)\right]^{k}$$
(47)

If we break down $P_k(n) \to \mathbb{C}S_k$ then we can break $V_{\lambda}^{P_k(n)}$ into reps $V_{\kappa}^{S_k}$ of S_k so we get

$$\left(V_{\text{nat}}^{S_n}\right)^{\otimes k} = \bigoplus_{\lambda \text{ of } S_n, \ \kappa \text{ of } S_k} V_{\lambda}^{S_n} \otimes V_{\kappa}^{S_k} \otimes V_{\lambda,\kappa}^{C(S_n,S_k)}$$
(48)

where the dimension of $V_{\lambda,\kappa}^{C(S_n,S_k)}$, which is the multiplicity of $V_{\lambda}^{S_n} \otimes V_{\kappa}^{S_k}$, is given by

$$\dim V_{\lambda,\kappa}^{C(S_n,S_k)} = \operatorname{tr}_{V_{\text{nat}}^{\otimes k}}(P_\lambda \otimes P_\kappa) = \frac{1}{n!} \sum_{\sigma \in S_n} \chi_\lambda(\sigma) \frac{1}{k!} \sum_{\tau \in S_k} \chi_\kappa(\tau) \prod_i (\operatorname{tr}_{V_{\text{nat}}}(\sigma^i))^{c_i(\tau)}$$
(49)

where $c_i(\tau)$ is the number of cycles in τ of length *i*. We have put this formula into a computer to obtain the examples below.

We're often interest in expanding the $V_{\lambda}^{S_n}$ for a particular κ of S_k , which we'll often write

$$\kappa(V_{\text{nat}}^{\otimes k}) = \sum_{\lambda \vdash n} \dim V_{\lambda,\kappa}^{C(S_n,S_k)} V_{\lambda}^{S_n}$$
(50)

For example we know that the antisymmetric product of naturals is always

$$[1^{k}](V_{\text{nat}}^{\otimes k}) \equiv [n-k+1, 1^{k-1}] + [n-k, 1^{k}]$$
(51)

It's also true that for $\kappa(V_{\text{nat}}^{\otimes k})$, where κ is a k-box Young diagram, the only rep of the form [n-k,*] in $\kappa(V_{\text{nat}}^{\otimes k})$ is $[n-k,\kappa]$.

5.1 k = 1

$$V_{\rm nat}^{\otimes 1} = [n] + [n-1,1] \tag{52}$$

$$\Box(V_{\text{nat}}^{\otimes 1}) = [n] + [n-1,1]$$
(53)

5.2 k = 2

$$V_{\text{nat}}^{\otimes 2} = 2[n] + 3[n-1,1] + [n-2,2] + [n-2,1,1]$$
(54)

$$\Box (V_{\text{nat}}^{\otimes 2}) = 2[n] + 2[n-1,1] + [n-2,2]$$
(55)

$$\Box(V_{\text{nat}}^{\otimes 2}) = [n-1,1] + [n-2,1,1]$$
(56)

5.3 *k* = 3

$$V_{\text{nat}}^{\otimes 3} = 5[n] + 10[n-1,1] + 6[n-2,2] + 6[n-2,1,1] + [n-3,3] + 2[n-3,2,1] + [n-3,1,1,1]$$
(57)

$$\Box \Box (V_{\text{nat}}^{\otimes 3}) = 3[n] + 4[n-1,1] + 2[n-2,2] + [n-2,1,1] + [n-3,3]$$
(58)

$$\square (V_{\text{nat}}^{\otimes 3}) = [n] + 3[n-1,1] + 2[n-2,2] + 2[n-2,1,1] + [n-3,2,1]$$
(59)

$$\Box(V_{\text{nat}}^{\otimes 3}) = [n-2,1,1] + [n-3,1,1,1]$$
(60)

5.4 k = 4

$$V_{\text{nat}}^{\otimes 4} = 15[n] + 37[n-1,1] + 31[n-2,2] + 31[n-2,1,1] + 10[n-3,3] + 20[n-3,2,1] + 10[n-3,1,1,1] + [n-4,4] + 3[n-4,3,1] + 2[n-4,2,2] + 3[n-4,2,1,1] + [n-4,1,1,1,1]$$
(61)

$$\Box \Box = (V_{\text{nat}}^{\otimes 4}) = 5[n] + 7[n-1,1] + 5[n-2,2] + 2[n-2,1,1] + 2[n-3,3] + [n-3,2,1] + [n-4,4]$$
(62)

$$= 2[n] + 7[n-1,1] + 5[n-2,2] + 6[n-2,1,1] + 2[n-3,3] + 3[n-3,2,1] + [n-3,1,1,1] + [n-4,3,1]$$
(63)

$$= 2[n] + 3[n-1,1] + 4[n-2,2] + [n-2,1,1] + [n-3,3] + 2[n-3,2,1] + [n-4,2,2]$$
(64)

$$= [n-1,1] + [n-2,2] + 3[n-2,1,1] + 2[n-3,2,1] + 2[n-3,1,1,1] + [n-4,2,1,1]$$
(65)

$$[V_{\text{nat}}^{\otimes 4}) = [n-3, 1, 1, 1] + [n-4, 1, 1, 1, 1]$$
(66)

ĸ	M	$\sum_{\alpha} d(R_{\kappa,M},\alpha) \ \alpha$	β
	$[4, 0^{n-1}]$		
	$[3, 1, 0^{n-2}]$		
	$[2, 2, 0^{n-2}]$		
	$[2, 1, 1, 0^{n-3}]$	□□□ + []]	
	$[1, 1, 1, 1, 0^{n-4}]$		
	$[3, 1, 0^{n-2}]$	□ + -	
	$[2, 2, 0^{n-2}]$	Β	B
	$[2, 1, 1, 0^{n-3}]$	$\Box \Box \Box + 2 \Box \Box + \Box$	₽
	$[1, 1, 1, 1, 0^{n-4}]$	H	H
	$[2, 2, 0^{n-2}]$		
	$[2, 1, 1, 0^{n-3}]$	+	
	$[1, 1, 1, 1, 0^{n-4}]$		
	$[2, 1, 1, 0^{n-3}]$	+=	
	$[1, 1, 1, 1, 0^{n-4}]$		
	$[1, 1, 1, 1, 0^{n-4}]$		

Table 2: table of k = 4

ĸ	М	β
	[4, 1]	DR -
	[3, 2]	
	[3, 1, 1]	₽
	[2, 2, 1]	₽
	[2, 1, 1, 1]	
	[3, 2]	OR -
	[3, 1, 1]	
	[2, 2, 1]	₽
	[2, 1, 1, 1]	
	[3, 1, 1]	
	[2, 2, 1]	
	[2, 1, 1, 1]	
	[2, 2, 1]	
	[2, 1, 1, 1]	
	[2, 1, 1, 1]	

Table 3: table of k = 5, only non-obvious examples listed