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1 Lie superalgebra homology for singleton

1.1 Commutation relations

The bosonic parts satisfy

[J+, J−] = 2J3 [J3, J±] = ±J±

[J̃+, J̃−] = 2J̃3 [J̃3, J̃±] = ±J̃± (1)

Compare to [1] equations (3.?) with

K0
1 = J3

K0
2 = J̃3

K±1 = J±

K±2 = J̃±

(2)

Then there are the four fermionic raising and four fermionic lowering operators (α = 1, 2)

S±1α S±2α (3)

which raise/lower the eigenvalues of K0
1 , K0

2 by ± 1
2 .

Read off the commutation relations from the zero-mode part of the affine algebra copied from [1]

[K0
1,m,K

±
1,n] = ±K±1,m+n [K0

2,m,K
±
2,n] = ±K±2,m+n (4)

[K0
1,m, S

±
1α,n] = ±1

2
S±1α,m+n [K0

1,m, S
±
2α,n] = ±1

2
S±2α,m+n (5)

[K0
2,m, S

±
1α,n] = ±1

2
S±1α,m+n [K0

2,m, S
±
2α,n] = ∓1

2
S±2α,m+n (6)

{S±1α,m, S
±
2β,n} = ∓2εαβK

±
1,m+n {S±1α,m, S

∓
2β,n} = ±2εαβK

±
2,m+n (7)

[K±1,m, S
∓
1α,n] = ±S±2α,m+n [K±1,m, S

∓
2α,n] = ∓S±1α,m+n (8)

[K±2,m, S
∓
1α,n] = ±S∓2α,m+n [K±2,m, S

±
2α,n] = ∓S±1α,m+n . (9)

In addition, there are six relations involving the level k of the current algebra. These read as follows,

[K0
1,m,K

0
1,n] = −k

2
mδm+n,0 [K0

2,m,K
0
2,n] =

k

2
mδm+n,0 (10)

[K+
1,m,K

−
1,n] = 2K0

1,m+n −mk δm+n,0 [K+
2,m,K

−
2,n] = 2K0

2,m+n +mk δm+n,0 (11)

{S+
1α,m, S

−
1β,n} = 2εαβ

(
K0

1,m+n −K0
2,m+n

)
− 2mk εαβ δm+n,0 (12)

{S+
2α,m, S

−
2β,n} = 2εαβ

(
K0

1,m+n +K0
2,m+n

)
− 2mk εαβ δm+n,0 . (13)

1.2 Quadratic twistor free field representation

For psu(1, 1|2) non-affine singleton have bosonic and fermionic oscillators for a, b, i, j = 1, 2

[α†a, α
b] = δba

{c†i , c
j} = δji (14)

Introduce bosonic generators

J+ = α†2α
1 J− = α†1α

2 J3 =
1

2
(α†1α

1 − α†2α2)

J̃+ = −c†2c1 J̃− = −c†1c2 J̃3 =
1

2
(c†2c

2 − c†1c1)

C = α†1α
1 + α†2α

2 − c†1c1 − c
†
2c

2

B = α†1α
1 + α†2α

2 (15)
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C commutes with everything, B has non-trivial commutators with the fermionic generators.

The fermionic generators (deduced by [C, S] = 0 and the commutation relations)

S+
11 = c†2α

1 + α†2c
1

S−11 = c†1α
2 + α†1c

2

S+
12 = −c†2α1 + α†2c

1

S−12 = −c†1α2 + α†1c
2

S+
21 = c†1α

1 − α†2c2

S−21 = −c†2α2 + α†1c
1

S+
22 = −c†1α1 − α†2c2

S−22 = c†2α
2 + α†1c

1 (16)

Using

{c†bα
a, α†cc

d} = α†cα
aδdb − c

†
bc
dδac (17)

we can check for example

{S+
11, S

−
11} = −{S+

12, S
−
12} = C = 0

{S+
11, S

−
12} = −{S+

12, S
−
11} = 2J3 − 2J̃3

{S+
21, S

−
21} = −{S+

22, S
−
22} = C = 0

{S+
21, S

−
22} = −{S+

22, S
−
21} = 2J3 + 2J̃3

(18)

1.3 Matter singleton states

Vacuum |1〉 defined by

α†1 |1〉 = α2 |1〉 = c†1 |1〉 = c2 |1〉 = 0 (19)

so that C |1〉 = 0.

It is annihilated by the following generators:(
J−, J̃−, S−1α, S

−
2α, S

+
2α

)
|1〉 (20)

This makes it half-BPS.

Acting with the remaining generators gives us the psu(1, 1|2) singleton representation, which coincides

with all the states we can build with C = 0.

oscillator GT operator charges xCy2J
3

z2J̃
3

bB

(J+)p |1〉 ∂p
12̇
Y x0y2p+1z−1b

(J+)pJ̃+ |1〉 ∂p
12̇
Z x0y2p+1zb

(J+)p 1
2 (S+

11 − S
+
12) |1〉 = (J+)pc†2α

1 |1〉 ∂p
12̇
λ41 x0y2p+2b2

(J+)p 1
2 (S+

11 + S+
12) |1〉 = (J+)pα†2c

1 |1〉 ∂p
12̇
λ
1

2̇ x0y2p+2b0

Table 1: Singleton states with C = 0, p ≥ 0.

The character is then

b

1− y2
(
yz−1 + yz + y2b+ y2b−1

)
(21)

This is the character of the atypical discrete series representation of psu(1, 1|2)

[0]+ = (−1

2
,

1

2
)⊕ 2(−1, 0) (22)

in equation (2.28) of [1].

Could also have chosen the ground state to be a fermion λ instead of the scalar Y . It makes no difference

to spectrum.
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1.3.1 Action of algebra on singleton states

The only subtle thing here is that

S+
11S

+
12 |1〉 = −2J̃+J+ |1〉 (23)

This can be checked from the oscillators or the action of the generators on the singleton from Bianchi and

co. [2] discussed below.

On (J+)p |1〉 the action of the algebra elements are:

J̃−, S−1α, S
+
2α : 0 (24)

J+, J̃+, S+
1α : multiplication (25)

J− : −p2(J+)p−1 |1〉 (26)

S−2α : pS+
1α(J+)p−1 |1〉 (27)

On J̃+(J+)p |1〉 the action of the algebra elements are:

J̃+, S+
1α, S

−
2α : 0 (28)

J+ : multiplication (29)

J− : −p2J̃+(J+)p−1 |1〉 (30)

J̃− : (J+)p |1〉 (31)

S−1α : −pS+
1α(J+)p−1 |1〉 (32)

S+
2α : S+

1α(J+)p |1〉 (33)

On S+
11(J+)p |1〉 the action of the algebra elements are:

J̃−, J̃+, S+
11, S

−
11, S

−
21, S

+
21 : 0 (34)

J+ : multiplication (35)

J− : −p(p+ 1)S+
11(J+)p−1 |1〉 (36)

S+
12 : 2J̃+(J+)p+1 |1〉 (37)

S−12 : 2(p+ 1)(J+)p |1〉 (38)

S+
22 : −2(J+)p+1 |1〉 (39)

S−22 : 2(p+ 1)J̃+(J+)p |1〉 (40)

On S+
12(J+)p |1〉 the action of the algebra elements are:

J̃−, J̃+, S+
12, S

−
12, S

−
22, S

+
22 : 0 (41)

J+ : multiplication (42)

J− : −p(p+ 1)S+
12(J+)p−1 |1〉 (43)

S+
11 : −2J̃+(J+)p+1 |1〉 (44)

S−11 : −2(p+ 1)(J+)p |1〉 (45)

S+
21 : 2(J+)p+1 |1〉 (46)

S−21 : −2(p+ 1)J̃+(J+)p |1〉 (47)

1.3.2 Comparison to Bianchi et al. conventions

Comparing to [2], fermion generators are identified with those of PSU(2, 2|4): Qi1, S
1
j , Q̄j2, S̄

i2 for i, j = 2, 3.

Z = ϕ34, Y = ϕ42.

[Q2
1, Y ] = −2λ41 (48)

[Q̄32, Y ] = λ̄12 (49)

{Q2
1, [Q̄32, Y ]} = {Q2

1, λ̄
1
2} = −2i∂12Z (50)

[Q2
1, Z] = 0 (51)

[Q̄32, Z] = 0 (52)
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1.4 Ghosts and ghost ground state

{b3, c3} = 1

{b±, c∓} = 2

[β±1α, γ
∓
1β ] = εαβ

[β±2α, γ
∓
2β ] = εαβ (53)

***I’ve guessed metric for bosonic ghosts.

Choose ghost vacuum to be

c3,±|0〉 = c̃3,±|0〉 = γ±1α|0〉 = γ±2α|0〉 = 0 (54)

With this choice of vacuum we are doing BRST homology rather than cohomology, see Section 4.

1.5 BRST operator

BRST operator is then

Q =c3J3 + 1
2c

+J− + 1
2c
−J+ + c̃3J̃3 + 1

2 c̃
+J̃− + 1

2 c̃
−J̃+

+ εαβγ∓1αS
±
1β + εαβγ∓2αS

±
2β

+ 1
2 (c+c−b3 + c−c3b+ + c3c+b−)

+ 1
2 (c̃+c̃−b̃3 + c̃−c̃3b̃+ + c̃3c̃+b̃−)

+ cγβ + γγb+ c̃γβ + γγb̃ (55)

***Not quite sure about metric normalisation for quadratic part γS for fermions, cf. (2.2) of [1].

All must be normal-ordered (i.e. put c, γ ghosts to the right).
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The remaining 48 cubic terms are:

− 2γ−11γ
+
12b

3 + 2γ−11γ
+
12b̃

3

+ 2γ−12γ
+
11b

3 − 2γ−12γ
+
11b̃

3

+ 2γ−22γ
+
21b

3 + 2γ−22γ
+
21b̃

3

− 2γ−21γ
+
22b

3 − 2γ−21γ
+
22b̃

3

− 2γ−12γ
−
21b

+ + 2γ−11γ
−
22b

+

+ 2γ+12γ
+
21b
− − 2γ+11γ

+
22b
−

+ 2γ−12γ
+
21b̃

+ − 2γ−11γ
+
22b̃

+

− 2γ+12γ
−
21b̃
− + 2γ+11γ

−
22b̃
−

+ 1
2c

3γ−11β
+
12 − 1

2c
3γ+11β

−
12

− 1
2c

3γ−12β
+
11 + 1

2c
3γ+12β

−
11

− 1
2c

3γ+21β
−
22 + 1

2c
3γ−21β

+
22

+ 1
2c

3γ+22β
−
21 − 1

2c
3γ−22β

+
21

+ 1
2c
−γ+11β

+
22 − 1

2c
−γ+12β

+
21

− 1
2c
−γ+21β

+
12 + 1

2c
−γ+22β

+
11

− 1
2c

+γ−11β
−
22 + 1

2c
+γ−12β

−
21

+ 1
2c

+γ−21β
−
12 − 1

2c
+γ−22β

−
11

+ 1
2 c̃

3γ−11β
+
12 − 1

2 c̃
3γ+11β

−
12

− 1
2 c̃

3γ−12β
+
11 + 1

2 c̃
3γ+12β

−
11

+ 1
2 c̃

3γ+21β
−
22 − 1

2 c̃
3γ−21β

+
22

− 1
2 c̃

3γ+22β
−
21 + 1

2 c̃
3γ−22β

+
21

+ 1
2 c̃
−γ+11β

−
22 − 1

2 c̃
−γ+12β

−
21

+ 1
2 c̃
−γ−22β

+
11 − 1

2 c̃
−γ−21β

+
12

+ 1
2 c̃

+γ−12β
+
21 − 1

2 c̃
+γ−11β

+
22

− 1
2 c̃

+γ+22β
−
11 + 1

2 c̃
+γ+21β

−
12 (56)

The Cartan ghost currents are then

J3,gh = {Qgh, b3} = 1
2b

+c− − 1
2b
−c+ + 1

2β
+
12γ
−
11 − 1

2β
−
12γ

+
11

− 1
2β

+
11γ
−
12 + 1

2β
−
11γ

+
12 − 1

2β
−
22γ

+
21 + 1

2β
+
22γ
−
21 + 1

2β
−
21γ

+
22 − 1

2β
+
21γ
−
22

J̃3,gh = {Qgh, b̃3} = 1
2 b̃

+c̃− − 1
2 b̃
−c̃+ + 1

2β
+
12γ
−
11 − 1

2β
−
12γ

+
11

− 1
2β

+
11γ
−
12 + 1

2β
−
11γ

+
12 + 1

2β
−
22γ

+
21 − 1

2β
+
22γ
−
21 − 1

2β
−
21γ

+
22 + 1

2β
+
21γ
−
22 (57)

Under these currents the ghosts are charged exactly as their Lie algebra counterparts.

1.6 Homology

Physical state must be uncharged under the two total Cartans J3,total = {Q, b3} and J̃3,total = {Q, b̃3}.
To cancel non-compact charge of matter part, need to use bosonic β ghosts.

The second index of the S±aα or β±aα is unchanged under PSU(2|2) and is related to an additional SL(2,R)

or SU(2) automorphism of the algebra (very specific to PSU(2|2)). The structure is unchanged by Q, so we

can split the state spaces up into those with a new quantity called value, which is defined by

value := # of 1’s−# 2’s (58)
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antighost number 1 2 3 4 5 6 7 8 2n 2n+ 1

value

2n+ 1 0 1

2n− 1 0 1

9 0 1 1

7 0 1 0 1 1

5 0 1 0 1 1 1 1

3 0 1 0 1 1 1 1 1 1

1 1 0 1 1 1 1 1 1 1 1

-1 1 0 1 1 1 1 1 1 1 1

-3 0 1 0 1 1 1 1 1 1

-5 0 1 0 1 1 1 1

-7 0 1 0 1 1

-9 0 1 1

−2n+ 1 0 1

−2n− 1 0 1

total 2 0 4 2 6 4 8 6 2n− 2 2n+ 2

Table 2: Number of states in homology for singleton.

antighost number 1 2 3 4 5 6 7 8

value

9 10-10

7 6-6 51-50 202-202

5 3-3 28-27 114-114 327-326 766-765

3 1-1 12-11 51-51 154-153 382-381 810-809 1557-1556

1 3-2 13-13 44-43 127-126 299-298 633-632 1211-1210 2160-2159

Table 3: Number of closed states minus exact states for singleton.

antighost number 1 2 3 4 5 6 7 8

value

9 10

7 6 57 252

5 3 31 141 441 1092

3 1 13 62 205 535 1191 2366

1 3 15 57 170 425 931 1843 3370

Table 4: Total number of states with eligible charges for singleton.

1.7 Homology examples

1.7.1 Ghost number −1

At this number there are 6 states (for α = 1, 2) with the requisite charges and they are all Q-closed

QS+
1αb
− |1〉 =0

QJ̃+β−1α |1〉 =0

Qβ−2α |1〉 =0 (59)

4 linear combinations of these are Q-exact (see next section), e.g. for α = 1

− β−21 |1〉+ S+
11b
− |1〉

S+
11b
− |1〉+ J̃+β−11 |1〉 (60)

We could take the two representatives of the homology to be β−2α |1〉.
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1.7.2 Ghost number −2

Total of 32 possible states. Leave out 12 states which are just b3 or b̃3 times states at ghost number −1. We

know these are Q-closed.

For value 1 with α = 1 overall there are 9 states

QJ+b−β−21 |1〉 =− β−21 |1〉+ S+
11b
− |1〉

Qb−β+
11 |1〉 =− β−21 |1〉+ S+

11b
− |1〉

QJ̃+b−β+
21 |1〉 =S+

11b
− |1〉+ J̃+β−11 |1〉

Qb̃+β−11 |1〉 =β−21 |1〉+ J̃+β−11 |1〉
Qβ−11β

−
22S

+
11 |1〉 =2S+

11b
− |1〉+ 2J̃+β−11 |1〉

Qβ−12β
−
21S

+
11 |1〉 =2β−21 |1〉 − 2S+

11b
− |1〉

Qβ−11β
−
21S

+
12 |1〉 =− 2β−21 |1〉 − 2J̃+β−11 |1〉

QJ+J̃+b−β−11 |1〉 =− S+
11b
− |1〉 − J̃+β−11 |1〉

QJ̃+b̃−β−21 |1〉 =β−21 |1〉+ J̃+β−11 |1〉 (61)

Similarly for value −1 with α = 2.

For values 3 and −3 there are one each

Qβ−11β
−
21S

+
11 |1〉 =0

Qβ−12β
−
22S

+
12 |1〉 =0 (62)

32 = 12 + 9 + 9 + 2

1.7.3 Representatives for odd ghost number

For odd antighost number 2n + 1 there is 1 state in homology for maximum value 2n + 1. This can be

represented with either

J̃+(β+
11β
−
11)nβ−11 (63)

or

(β+
21β
−
21)nβ−21 (64)

For the former one can move down with the SU(2) generator. The state

nJ̃+(β+
11)n−1b+12(β−11)n+1 + (n+ 1)J̃+(β+

11β
−
11)nβ−12 (65)

has value 2n− 1. It is closed and not exact. Checked up to n = 3.

For the latter one can also move down with the SU(2) generator. The state

n(β+
21)n−1b+22(β−21)n+1 + (n+ 1)(β+

21β
−
21)nβ−22 (66)

has value 2n− 1. It is closed and not exact. Checked up to n = 3.

1.7.4 Representatives for even ghost number

For even antighost number 2n + 4 there is 1 state in homology for value 2n + 1. This can be represented

simply with

(β+
11β
−
11 + β+

21β
−
21)nS+

11b
−b̃+b̃3b̃− |1〉 (67)

For up to n = 2 have checked that it is closed and not exact.

Can we move down with even generators?
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1.8 Potential psu(1, 1|2) action on states

It looks like there is some J+-like action that takes us from the top-valued odd and even homology to their

counterparts two antighost numbers higher.

Search through all the combinations of fields with antighost number 2 and value 2 that are uncharged

under the total Cartans. If we exclude things of the form βββγ, then they have the general form Jββ or

Sbβ. Some examples:

J+β−11β
−
21

β+
11β
−
11

β+
21β
−
21

S+
21b

3β−21

J+S+
21b
−β−21 (68)

There are 4×5/2 = 10 of the form Jββ (excluding multiplying by J3 or J̃3) and 6×4 = 24 of the form Sbβ.

Even if some linear combination of these doesn’t commute with Q, it could commute up to the total

Cartans which annihilate all relevant states, see below.

There also seems to be a fermionic operator that takes us from antighost number one to antighost number

four, e.g. b̃+b̃−b̃3 takes us from S+
11b
− |1〉 to S+

11b
−b̃+b̃3b̃− |1〉.

1.8.1 General principle of commuting action

Suppose we have a state |ψ〉 in homology

Q |ψ〉 = 0, @ |φ〉 such that |ψ〉 = Q |φ〉 (69)

Suppose there is also an operator Ĵ+ that acts on |ψ〉 and commutes with Q on this state

[Q, Ĵ+] |ψ〉 = 0 (70)

Suppose in addition that there is an operator Ĵ− such that

Ĵ−Ĵ+ |ψ〉 ∝ |ψ〉 (71)

and such that on all states with vanishing total Cartan charges

[Q, Ĵ−] |φ〉 = 0 ∀φ (72)

[Probably this implies that [Q, Ĵ−] =
∑
i ciJ

3,total
i for the total Cartan charges.]

Then the state Ĵ+ |ψ〉 is also in Q homology.

Proof: it is Q-closed by (70). Prove it is not Q-exact by contradiction. If it is Q-exact, then so is |ψ〉,
since if

Ĵ+ |ψ〉 = Q |φ〉 (73)

then

|ψ〉 ∝ Ĵ−Q |φ〉 (74)

by (71). Then by (72)

|ψ〉 ∝ QĴ− |φ〉 (75)

Contradiction! So Ĵ+ |ψ〉 is not Q-exact. QED.

2 Extension to other atypical discrete series representations

In our N = 4-friendly notation (see bmodel-u112-*.dvi) for the bosonic decomposition of the atypicals for

n ∈ N, n ≥ 2 [
n− 1

2

]
+

= (−n2 ,
n
2 )⊕ 2(−n2 −

1
2 ,

n
2 −

1
2 )⊕ (−n2 − 1, n2 − 1) (76)

This has a slightly different HWS to reference [1]. n = 1 reduces to singleton, which is slightly simpler.
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2.1 States

Assume have LWS defined by

J̃3 |n〉 = −n2 |n〉
J3 |n〉 = n

2 |n〉
J̃− |n〉 = 0

J− |n〉 = 0

(J̃+)n+1 |n〉 = 0

(S−1α, S
−
2α, S

+
2α) |n〉 = 0 (77)

So states are

(J̃+)p(J+)q |n〉 (78)

for p = 0, . . . n and q = 0, 1, 2 . . . and charges y2J
3

z2J̃
3

= y2q+nz2p−n.

S+
1α(J̃+)p(J+)q |n〉 (79)

for α = 1, 2, p = 0, . . . n− 1 and q = 0, 1, 2 . . . and charges y2q+n+1z2p−n+1.

S+
11S

+
12(J̃+)p(J+)q |n〉 (80)

for p = 0, . . . n− 2 and q = 0, 1, 2 . . . and charges y2q+n+2z2p−n+2.

Ground state |n〉 is like half-BPS state tr(Y n) for N = 4.

2.2 Action of algebra on states

Non-trivial relation:

S+
11S

+
12(J̃+)n−1 |n〉 = − 2

n
(J̃+)nJ+ |n〉 (81)

Can check this either by using realisation of rep n as symmetric product of singleton or by applying J̃−

to both sides.

2.3 Homology for n = 2

antighost number 1 2 3 4 5 6 7 8 2n− 1 2n

value

2n 0 1

2n− 2 0 1

8 0 1 1 1

6 0 1 0 1 1 1

4 0 1 0 1 1 1 1 1

2 1 0 1 1 1 1 ? 1 1

0 0 1 0 1 1 1 1 ? 1 1

total 0 3 0 5 3 7 5 ? 2n− 3 2n+ 1

Table 5: Number of states in homology for n = 2.

2.3.1 Representatives of homology

For antighost number 2 and value 2 any of the five eligible states work, e.g.

β−21β
−
21 |2〉 (82)
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For ghost 2 and value 0 the following works

β−22β
−
21 |2〉 (83)

For ghost 2n and value 2n the following works

(β+
11β
−
11)n−1β−22β

−
21 |2〉 (84)

2.4 Homology for higher n

See tables.

antighost number 1 2 3 4 5 6 7 8 9 2n 2n+ 1

value

2n+ 1 0 1

2n− 1 0 1

9 0 1 1 1

7 0 1 0 1 1 1

5 0 1 0 1 1 ? 1 1

3 1 0 1 1 1 ? ? 1 1

1 0 1 0 1 1 1 ? ? 1 1

total 0 0 4 0 6 4 8 ? ? 2n− 2 2n+ 2

Table 6: Number of states in homology for n = 3.

antighost number 1 2 3 4 5 6 7 8 9 10 2n− 1 2n

value

2n 0 1

2n− 2 0 1

10 0 1 1 1

8 0 1 0 ? 1 1

6 0 1 0 1 1 ? 1 1

4 1 0 1 1 1 ? ? 1 1

2 0 1 0 1 1 ? ? ? 1 1

0 0 1 0 1 1 ? ? ? 1 1

total 0 0 0 5 0 7 5 ? ? ? 2n− 3 2n+ 1

Table 7: Number of states in homology for n = 4.

antighost number 1 2 3 4 5 6 7 8 9 10 2n 2n+ 1

value

2n+ 1 0 1

2n− 1 0 1

11 0 1 1

9 0 1 ? 1 1

7 0 1 0 1 ? 1 1

5 1 0 1 1 ? ? 1 1

3 0 1 0 1 ? ? ? 1 1

1 0 1 0 1 ? ? ? 1 1

total 0 0 0 0 6 0 8 ? ? ? 2n− 2 2n+ 2

Table 8: Number of states in homology for n = 5.
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2.5 General features of homology

Homology starts at antighost number n, where n+1 states appear in a representation of su(2). At antighost

number n+ 1 there is nothing. At antighost number n+ 2 there are n+ 3 states.

Then pattern establishes itself.

Note that for n+ 4 and above the pattern for n and n+ 2 agree.

Horizontally always have (0)|1|0|1|1|1 · · · .

3 Extension to finite dimensional atypicals

3.1 Results in the literature

In http://webdoc.sub.gwdg.de/ebook/serien/e/mpi_mathematik/2003/39.ps “SuperLie and problems

(to be) solved with it” by Pavel Grozman and Dimitry Leites they describe their Mathematica program

SuperLie for calculating Lie superalgebra (co)homology and some (limited) calculations they can do with it.

On page 21 there are the following statements for the trivial representation C (they abbreviate H∗(g;K)

to H∗(g) where K is their field)

H∗(gl(m|n)) ∼= H∗(gl(max(m,n))) (85)

H∗(psl(n|n)) ∼= H∗(sl(n))⊗K[h2] for n > 2

H∗(psl(2|2)) ∼= C[x2, y2, h2, ξ3]/(x2y2 − h22) (86)

where h2 represents the extension sl(n|n) → psl(n|n) . x2, y2 and h2 form some kind of sl(2), a bit like

ours? Again you can see here that psl(2|2) is a bit exceptional in the psl(n|n) series.

Original calculation was in [FL]. This missed cocycle ξ3. The answer was rectified at our request by A.

Shapovalov with the help of SuperLie, see also [KK1].

[FL]: Fuks Leites D.B. FUKS and D.A. LEITES, Cohomology of Lie superalgebras, Comptes Rendus de

l’Académie Bulgare des Sciences, tome 37, n. 12 (1984).

[KK1] Kornyak, http://arxiv.org/abs/math.SC/9906046, http://arxiv.org/abs/math.SC/0002210

See also:

“Cohomology of Lie superalgebras and their generalizations” by M. Scheunert and R. Zhang, Journal of

Mathematical Physics 39 5024-5061 (1998) http://arxiv.org/abs/q-alg/9701037.

“Cohomology of Lie superalgebras slm|n and osp2|2n” by Yucai Su and R.B. Zhang (2004) http://arxiv.

org/abs/math/0402419.

Finitude de l’homologie de certains modules de dimension finie sur une super algèbre de Lie http:

//aif.cedram.org/aif-bin/item?id=AIF_1997__47_2_531_0 C. Gruson, Ann. Inst. Fourier, Grenoble

47, 531 (1997) also has the result (85) for gl(m|n) and trivial C rep in THeorem 5.3.

3.2 Trivial representation

Assume have matter state |0〉 killed by all generators. Only get interesting potential states by building up

invariant things with ghosts.

antighost number 0 1 2 3 4 5 6 7 8 9 2n 2n+ 1

value

2n 1 0

2n− 2 1 1

8 1 0 1 1

6 1 0 1 ? 1 1

4 1 0 1 1 1 ? 1 1

2 1 0 1 1 1 1 1 ? 1 1

0 1 0 1 1 1 1 1 1 1 ? 1 1

total 1 0 3 1 5 3 7 5 9 ? 2n+ 1 2n− 1

Table 9: Number of states in homology for trivial representation.
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Representative for homology at ghost 2 and value 2(
β+
11β
−
11 + β+

21β
−
21

)
|0〉 (87)

Representative for homology at ghost 2n and value 2n(
β+
11β
−
11 + β+

21β
−
21

)n |0〉 (88)

Representative for homology at ghost 2 and value 0(
β+
11β
−
12 + β+

21β
−
22 + β+

12β
−
11 + β+

22β
−
21

)
|0〉 (89)

Or first pair or second pair on their own.

Representative for homology at ghost 3 and value 0(
b+b−b3

)
|0〉 (90)

b̃+, b̃−, b̃3 |0〉 also works.

Representative for homology at ghost 5 and value 2(
b+b−b3

) (
β+
11β
−
11 + β+

21β
−
21

)
|0〉 (91)

A single one of the terms also works. An SU(2) descendant of this works at value 0.

Similarly for ghost 2n+ 1 and value 2n− 3.

Q: Can we translate these representatives to the literature result in (86)?

3.3 Adjoint

14-dimensional adjoint. It is contained in the Kac module [0, 0] : [0]→ [ 12 ]→ [0]. [0] is the 1-dim trivial and

[ 12 ] is the 14-dim adjoint.

Need to know full action of algebra on all states in order to work out homology.

From [1]:

Finite dimensional Kac modules of psl(2|2) are labelled by pairs [j1, j2] for ji = 0, 12 , 1, . . . . A Kac module

[j1, j2] is irreducible whenever j1 6= j2. In case j1 = j2, however, Kac modules turn out to be indecomposable

composites of smaller irreducible building blocks (short multiplets).

[For Kac module take HWS and act with all fermionic generators.]

Adjoint has character

2χ 1
2

(z1)χ 1
2

(z2) + χ1(z1) + χ1(z2) (92)

Represent the states as |A〉 where B |A〉 = fCAB |C〉.
There are eligible states with correct charges at any antighost number, e.g.

(β+
1αi
β−1βj

)nb−
∣∣J+

〉
(β+

1αi
β−1βj

)nβ+
11

∣∣S−11〉 (93)

All states at antighost number one are closed.

3.4 Other finite-dimensional atypicals

No calculations were done for the finite-dimensional atypicals beyond the trivial and the adjoint.

The problem is that for the (co)homology the computer program has to know the action of each generator

on each state in the representation. This was easy for the trivial and the adjoint, but harder for the singleton

(see Section 1.3.1) and so tedious for the higher discrete series irreps that I didn’t bother to type it up

(although a hand-written version is available on request; you can also see it in the computer code). It’s easy

enough to get the action correct for the bosonic generators, but very fiddly to get it right for the fermionic

guys, which take you between the bosonic reps. There are signs and coefficients which make things ugly.

However we will sketch here how it should work and compare it to the adjoint.
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antighost number 0 1 2 3 4 5 6 7 8 2n− 1 2n

value

2n 1 0

2n− 2 2 1

8 1 0 2 2

6 1 0 2 1 2 2

4 1 0 2 1 2 2 2 2

2 1 0 2 1 2 2 2 ? 2 2

0 0 1 0 2 1 2 2 ? ? 2 2

total 0 3 0 8 3 12 8 16? 12? 4n 4n− 4

Table 10: Number of states in homology for adjoint representation.

For j > 0

χ[j](z1, z2) = 2χj(z1)χj(z2)− χ
j+

1
2

(z1)χ
j− 1

2
(z2)− χ

j− 1
2

(z1)χ
j+

1
2

(z2) (94)

In general we have states

|j1,m1; j2,m2; a〉 (95)

where a is the multiplicity of 2 in the first bosonic irrep.

For the adjoint j = 1
2 the HWS are ∣∣ 1

2 ,
1
2 ; 1

2 ,
1
2 ; 1
〉

=
∣∣S+

11

〉∣∣ 1
2 ,

1
2 ; 1

2 ,
1
2 ; 2
〉

=
∣∣S+

12

〉
(96)

The HWS is killed by 5 fermionic generators and 2 bosonic ones

(S+
1α, S

−
11, S

+
21, S

−
21, J

+, J̃+)
∣∣ 1
2 ,

1
2 ; 1

2 ,
1
2 ; 1
〉

= 0 (97)

The Cartans give self-explanatory results; then the remaining actions are

J−
∣∣ 1
2 ,

1
2 ; 1

2 ,
1
2 ; 1
〉

=
∣∣ 1
2 ,−

1
2 ; 1

2 ,
1
2 ; 1
〉

= −
∣∣S−21〉

J̃−
∣∣ 1
2 ,

1
2 ; 1

2 ,
1
2 ; 1
〉

=
∣∣ 1
2 ,

1
2 ; 1

2 ,−
1
2 ; 1
〉

= −
∣∣S+

21

〉
S+
22

∣∣ 1
2 ,

1
2 ; 1

2 ,
1
2 ; 1
〉

= |1, 1; 0, 0〉 = −2
∣∣J+

〉
S−22

∣∣ 1
2 ,

1
2 ; 1

2 ,
1
2 ; 1
〉

= |0, 0; 1, 1〉 = 2
∣∣∣J̃+

〉
S−12

∣∣ 1
2 ,

1
2 ; 1

2 ,
1
2 ; 1
〉

= − |0, 0; 1, 0〉 − |1, 0; 0, 0〉 = −2
∣∣∣J̃3
〉

+ 2
∣∣J3
〉

(98)

Continue until all actions on all states are elucidated.

Some of these actions will generalise to the general j case, but there may be j-dependent factors that

need to be determined explicitly. This was true for the general discrete series atypicals, but in that case we

had an explicit realisation of these states from N = 4.

Perhaps it is possible to get the general j states by some sort of tensor product of the adjoint?

4 Lie superalgebra cohomology versus homology

The ghost vacuum choice that we made in equation (54) following Tanaka for gl(1|1), with the vacuum killed

by all c and γ ghosts, means that we are doing homology with states built up with antighosts.

For the cohomology one would use a ghost vacuum killed by all antighosts

b3,±|0〉 = b̃3,±|0〉 = β±1α|0〉 = β±2α|0〉 = 0 (99)

and then build up states with c and γ so that they have positive ghost number.

For finite-dimensional algebras and representations, the homology and cohomology groups are known to be

isomorphic, see page 19 of http://webdoc.sub.gwdg.de/ebook/serien/e/mpi_mathematik/2003/39.ps.

14

http://webdoc.sub.gwdg.de/ebook/serien/e/mpi_mathematik/2003/39.ps


Calculations with computer programs confirmed this.

Also the infinite-dimensional atypical discrete series representations were checked up to around ghost

number. They were also found to have the same size of cohomology groups at each ghost number and value

as the homology.

5 Lift to affine case

From [1]:

The conformal dimension for a PSU(1, 1|2) WZW state is

h[(±,j1),j2] =
1

k
(−j1(j1 + 1) + j2(j2 + 1)) (100)

Atypical or BPS representations have zero conformal dimensions, from the formula

h[(±,−j−1),j] =
1

k
(−(j + 1)j + j(j + 1)) = 0 (101)

So theG/G calculation for the 1-spectrally flowed sector should reduce to the Lie super-algebra calculation

with J sector as the singleton derived from the twistor free field rep and vacuum in I sector.

6 Relation to AdS3 × S3

See for example recent paper [3] that covers some of the rep. theory too.

7 Comparison with GL(1|1)
Bosonic ghosts (i.e. corresponding to fermionic group Lie algebra elements) are needed to pad out states so

that their total Cartan charges are zero.

Have to understand how the Lie superalgebra homology relates to Vladimir’s calculation. Is Vladimir

two copies, right- and left-moving, or is it one copy that splits in two? Remember there that we reduce to

PSU(1|1).

There should be at least one state from the cohomological reduction to PSU(1|1) - but what group action

do we use for the reduction?
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