PSL(n|n) Lie superalgebra (co)homology

September 29, 2011

Contents

1	1.1 Quadratic twistor free field representation	1
2	BRST operator	2
3	BRST cohomology for trivial representation	2
4	Singleton representation for n even	3
5	BRST cohomology for the singleton	4

1 Lie superalgebra relations

1.1 Quadratic twistor free field representation

For psl(n|n) non-affine singleton have bosonic and fermionic oscillators for $\alpha, \beta, i, j = 1, \dots n$

$$[a^{\alpha}, a^{\dagger}_{\beta}] = \delta^{\alpha}_{\beta}$$

$$\{c^{i}, c^{\dagger}_{j}\} = \delta^{i}_{j}$$
(1)

Introduce block-diagonal bosonic generators

$$\begin{split} L^{\alpha}_{\beta} &= a^{\dagger}_{\beta} a^{\alpha} - \frac{1}{n} \delta^{\alpha}_{\beta} a^{\dagger}_{\gamma} a^{\gamma} \\ R^{i}_{j} &= c^{\dagger}_{j} c^{i} - \frac{1}{n} \delta^{i}_{j} c^{\dagger}_{k} c^{k} \\ C &= a^{\dagger}_{\alpha} a^{\alpha} + c^{\dagger}_{i} c^{i} \\ B &= n + a^{\dagger}_{\alpha} a^{\alpha} - c^{\dagger}_{i} c^{i} \end{split} \tag{2}$$

C commutes with everything, B has non-trivial commutators with the fermionic generators. The off-diagonal fermionic generators are

$$Q_{\alpha}^{i} = a_{\alpha}^{\dagger} c^{i}$$

$$\bar{Q}_{i}^{\alpha} = c_{i}^{\dagger} a^{\alpha}$$
(3)

Take the Cartans to be

$$(L_1^1, \dots L_{n-1}^{n-1}, R_1^1, \dots R_{n-1}^{n-1}) \tag{4}$$

Sometimes we will group everything together into a matrix M^a_b with $a,b=1,\dots 2n$ with

$$M_b^a = M_{\beta,j}^{\alpha,i} = \begin{pmatrix} L_\beta^\alpha & \bar{Q}_j^\alpha \\ Q_j^i & R_j^i \end{pmatrix}$$
 (5)

The non-trivial commutation relations are

$$\begin{split} [L^{\alpha}_{\beta}, L^{\gamma}_{\delta}] &= \delta^{\alpha}_{\delta} L^{\gamma}_{\beta} - \delta^{\gamma}_{\beta} L^{\alpha}_{\delta} \\ [R^{i}_{j}, R^{k}_{l}] &= \delta^{i}_{l} R^{k}_{j} - \delta^{\gamma}_{\beta} L^{i}_{l} \\ [L^{\alpha}_{\beta}, Q^{i}_{\gamma}] &= \delta^{\alpha}_{\gamma} Q^{i}_{\beta} - \frac{1}{n} \delta^{\alpha}_{\beta} Q^{i}_{\gamma} \\ [L^{\alpha}_{\beta}, \bar{Q}^{i}_{\gamma}] &= -\delta^{\gamma}_{\beta} \bar{Q}^{\alpha}_{i} + \frac{1}{n} \delta^{\alpha}_{\beta} \bar{Q}^{\gamma}_{i} \\ [R^{i}_{\beta}, Q^{k}_{\alpha}] &= -\delta^{k}_{j} Q^{i}_{\alpha} + \frac{1}{n} \delta^{i}_{j} Q^{k}_{\alpha} \\ [R^{i}_{j}, \bar{Q}^{\alpha}_{k}] &= \delta^{i}_{k} \bar{Q}^{\alpha}_{j} - \frac{1}{n} \delta^{i}_{j} \bar{Q}^{\alpha}_{k} \\ \{Q^{i}_{\alpha}, \bar{Q}^{\beta}_{j}\} &= \delta^{i}_{j} L^{\beta}_{\alpha} + \delta^{\alpha}_{\alpha} R^{i}_{j} + \frac{1}{n} \delta^{i}_{j} \delta^{\beta}_{\alpha} C \\ [B, Q^{i}_{\alpha}] &= 2Q^{i}_{\alpha} \\ [B, \bar{Q}^{i}_{i}] &= -2\bar{Q}^{\alpha}_{i} \end{split}$$
 (6)

2 BRST operator

We have ghost pairs (C_b^a, B_d^c) with commutator

$$[B_b^a, C_d^c] = \delta_d^a \delta_b^c \tag{7}$$

Sometimes we will use (γ, β) for the bosonic ghosts.

The BRST operator is then

$$Q = C_{\alpha}^{\beta} L_{\beta}^{\alpha} - C_{n}^{n} L_{n}^{n} + C_{i}^{j} R_{j}^{i} - C_{2n}^{2n} R_{n}^{n} + \bar{\gamma}_{i}^{\alpha} Q_{\alpha}^{i} + k \gamma_{\alpha}^{i} \bar{Q}_{i}^{\alpha}$$

$$- C_{\alpha}^{\beta} C_{\gamma}^{\alpha} B_{\beta}^{\beta} + C_{\alpha}^{n} C_{n}^{\alpha} \sum_{a=1}^{n-1} B_{a}^{a}$$

$$- C_{i}^{j} C_{k}^{i} B_{j}^{k} + C_{i}^{2n} C_{2n}^{i} \sum_{a=n+1}^{2n-1} B_{a}^{a}$$

$$- C_{\beta}^{\alpha} \bar{\gamma}_{i}^{\beta} \beta_{\alpha}^{i} + \frac{1}{n} C_{\alpha}^{\alpha} \bar{\gamma}_{i}^{\beta} \beta_{\beta}^{i}$$

$$+ k C_{\beta}^{\alpha} \gamma_{i}^{i} \bar{\beta}_{i}^{\beta} - \frac{k}{n} C_{\alpha}^{\alpha} \gamma_{i}^{\beta} \bar{\beta}_{i}^{\beta}$$

$$+ k C_{j}^{\alpha} \gamma_{i}^{\beta} \beta_{\beta}^{j} - \frac{1}{n} C_{i}^{i} \bar{\gamma}_{j}^{\alpha} \beta_{\alpha}^{j}$$

$$+ C_{j}^{i} \bar{\gamma}_{\alpha}^{\beta} \beta_{j}^{\beta} - \frac{1}{n} C_{i}^{i} \bar{\gamma}_{j}^{\alpha} \beta_{\alpha}^{\beta}$$

$$- k C_{j}^{i} \gamma_{\alpha}^{j} \bar{\beta}_{i}^{\alpha} + \frac{k}{n} C_{i}^{i} \gamma_{\alpha}^{j} \bar{\beta}_{j}^{\alpha}$$

$$- k \bar{\gamma}_{i}^{\alpha} \gamma_{\beta}^{i} B_{\beta}^{\beta} + k \bar{\gamma}_{i}^{n} \gamma_{i}^{n} \sum_{a=1}^{n-1} B_{a}^{a}$$

$$- k \bar{\gamma}_{i}^{\alpha} \gamma_{\beta}^{i} B_{j}^{i} + k \bar{\gamma}_{n}^{\alpha} \gamma_{\alpha}^{\alpha} \sum_{a=n+1}^{2n-1} B_{a}^{a}$$

$$(8)$$

Ignore Einstein summation terms that include C_n^n and C_{2n}^{2n} .

The sums from 1 to n-1 come from commutations that give L_n^n or R_n^n that we want to replace. k should be -1 to get a proper metric, but it's easier just to set it to be 1.

3 BRST cohomology for trivial representation

In this case we have states

$$C^{A_1} \cdots C^{A_p} |0\rangle \tag{9}$$

The BRST operator we need is

$$Q = f_C^{AB} : C^{\hat{A}} C^{\hat{B}} B_{\hat{C}} : \tag{10}$$

and it acts

$$QC^{A_1} \cdots C^{A_p} |0\rangle = f_C^{AB} C^{\hat{A}} C^{\hat{B}} [B_{\hat{C}}, C^{A_1} \cdots C^{A_p}] |0\rangle$$
 (11)

Table 1: Number of states in cohomology for trivial representation of psl(2|2).

Table 2: Number of states in cohomology for trivial representation of psl(3|3).

Table 3: Number of states in cohomology for trivial representation of psl(4|4).

4 Singleton representation for n even

n must be even for the singleton representation.

Vacuum $|1\rangle$ defined by

$$a_{\alpha}^{\dagger} |1\rangle = c_{i}^{\dagger} |1\rangle = 0 \quad \text{for } \alpha, i = 1, \dots \frac{n}{2}$$

 $a^{\alpha} |1\rangle = c^{i} |1\rangle = 0 \quad \text{for } \alpha, i = \frac{n}{2} + 1, \dots n$ (12)

The vacuum $|1\rangle$ is killed by the central element C from (2), $C|1\rangle = 0$. With the slightly awkward definition of B in (2) we also have $B|1\rangle = 0$.

It is annihilated by three-quarters of the fermionic generators:

$$Q_{\alpha}^{i}|1\rangle = 0$$
 for $i = \frac{n}{2} + 1, \dots n$ and $\alpha = 1, \dots \frac{n}{2}$
 $\bar{Q}_{i}^{\alpha}|1\rangle = 0$ for $\alpha = \frac{n}{2} + 1, \dots n$ and $i = 1, \dots \frac{n}{2}$ (13)

These include all of the lowering operators and half of the raising operators, making it half-BPS.

Acting with the remaining generators

$$Q_{\alpha}^{i}$$
 for $i = 1, \dots, \frac{n}{2}$ and $\alpha = \frac{n}{2} + 1, \dots, n$
 \bar{Q}_{i}^{α} for $\alpha = 1, \dots, \frac{n}{2}$ and $i = \frac{n}{2} + 1, \dots, n$ (14)

gives us the psl(n|n) singleton representation, which coincides with all the oscillator states we can build on this vacuum with C = 0.

The Cartans on the vacuum are

$$(L_1^1, \dots, L_{\frac{n}{2}}^{\frac{n}{2}}, L_{\frac{n}{2}+1}^{\frac{n}{2}+1}, \dots, L_{n-1}^{n-1}, R_1^1, \dots, R_{\frac{n}{2}}^{\frac{n}{2}}, R_{\frac{n}{2}+1}^{\frac{n}{2}+1}, \dots, R_{n-1}^{n-1}) |1\rangle = (-\frac{1}{2}, \dots, -\frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2}, -\frac{1}{2}, \dots, -\frac{1}{2}) |1\rangle$$

$$(15)$$

The commutators of the Cartans with the oscillators are $[L^{\beta}_{\beta}, a^{\dagger}_{\alpha}] = \delta^{\beta}_{\alpha} a^{\dagger}_{\beta} - \frac{1}{n} a^{\dagger}_{\alpha}$

$$[L_{\beta}^{\beta}, a_{\alpha}^{\dagger}] = \delta_{\alpha}^{\beta} a_{\beta}^{\dagger} - \frac{1}{n} a_{\alpha}^{\dagger}$$

$$[L_{\beta}^{\beta}, a^{\alpha}] = -\delta_{\beta}^{\alpha} a^{\beta} + \frac{1}{n} a^{\alpha}$$

$$[R_{j}^{j}, c_{i}^{\dagger}] = \delta_{i}^{j} c_{j}^{\dagger} - \frac{1}{n} c_{i}^{\dagger}$$

$$[R_{j}^{i}, c^{i}] = -\delta_{i}^{i} c^{j} + \frac{1}{n} c^{i}$$
(16)

To build the states of the singleton, construct states with numbers of the oscillators $n_{\alpha}^{a} \in \{0, ...\}$ for $\alpha \in \{1, ... n\}$ and $n_{i}^{c} \in \{0, 1\}$ for $i \in \{1, ... n\}$

$$\prod_{\alpha=1}^{\frac{n}{2}} (a^{\alpha})^{n_{\alpha}^{a}} \prod_{\alpha=\frac{n}{2}+1}^{n} (a_{\alpha}^{\dagger})^{n_{\alpha}^{a}} \prod_{i=1}^{\frac{n}{2}} (c^{i})^{n_{i}^{c}} \prod_{i=\frac{n}{2}+1}^{n} (c_{i}^{\dagger})^{n_{i}^{c}} |1\rangle$$
(17)

and then impose the C=0 constraint.

Given the 2n-2 Cartans and the C and B of such a state, the number of oscillators is then

$$n_{\alpha}^{a} = -\frac{1}{2} - \frac{1}{2n}B - \frac{1}{2n}C - L_{\alpha}^{\alpha} \qquad \text{for } \alpha \in \{1, \dots, \frac{n}{2}\}$$

$$n_{\alpha}^{a} = -\frac{1}{2} + \frac{1}{2n}B + \frac{1}{2n}C + L_{\alpha}^{\alpha} \qquad \text{for } \alpha \in \{\frac{n}{2} + 1, \dots, n - 1\}$$

$$n_{n}^{a} = -\frac{1}{2} + \frac{1}{2n}B + \frac{1}{2n}C - \sum_{\beta=1}^{n-1}L_{\beta}^{\beta} \qquad \text{for } i \in \{1, \dots, \frac{n}{2}\}$$

$$n_{i}^{c} = \frac{1}{2} + \frac{1}{2n}B - \frac{1}{2n}C - R_{i}^{i} \qquad \text{for } i \in \{1, \dots, \frac{n}{2}\}$$

$$n_{i}^{c} = \frac{1}{2} - \frac{1}{2n}B + \frac{1}{2n}C + R_{i}^{i} \qquad \text{for } i \in \{\frac{n}{2} + 1, \dots, n - 1\}$$

$$n_{n}^{c} = \frac{1}{2} - \frac{1}{2n}B + \frac{1}{2n}C - \sum_{j=1}^{n-1}R_{j}^{j} \qquad (18)$$

Given that there are only so many Q's and \bar{Q} 's we can use to build up the states from (14) and the commutation relations (6), we find that for the singleton states $|B| \in \{0, 2, 4, ...n\}$. Note that with these conventions for psl(4|4), |B| = 4 corresponds to the field strength, |B| = 2 corresponds to the fermions and B = 0 corresponds to the scalars.

$\mathcal{N}=4$ fields	oscillator states	Cartans	В
$F_{(1,2)(1,2)}$	$a_{(3,4)}^{\dagger} a_{(3,4)}^{\dagger} c^0 c^1 1\rangle$	[-1, -1, p, 0, 0, 0]	4
$\lambda^i_{(3,4)}$	$\left\{ \hat{a}_{(3,4)}^{\dagger} \hat{c}^{(1,2)} 1 \rangle, a_{(3,4)}^{\dagger} c^1 c^2 c_{(3,4)}^{\dagger} 1 \rangle \right\}$		2
Z	$ \hspace{.06cm} \hspace{.06cm} 1 angle$	$\left[-\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2} \right]$	0
$\{X,Y,X^\dagger,Y^\dagger\}$	$c^{(0,1)}c^{\dagger}_{(3,4)} 1\rangle$	$\left[-\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2} \right]$	0
Z^\dagger	$\left c^0 c^1 c_3^{\dagger} c_4^{\dagger} \left 1 \right\rangle \right $	$\left[-\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, \frac{1}{2} \right]$	0
$ar{\lambda}_i^{(1,2)}$	$\left \{ a^{(1,2)}c_{(3,4)}^{\dagger} 1 \rangle, a^{(1,2)}c^{(1,2)}c_3^{\dagger}c_4^{\dagger} 1 \rangle \} \right $		-2
$\bar{F}^{(1,2)(1,2)}$	$a^{(1,2)}a^{(1,2)}c_3^{\dagger}c_4^{\dagger} 1\rangle$	[-p, -2+p, 1, 0, 0, 0]	-4
$\partial_{(3,4)}^{(1,2)}$	$a^{(1,2)}a^{\dagger}_{(3,4)}$		0

Table 4: Map to states. $p \in \{0, 1, 2\}$.

Note that F_{12} and \bar{F}^{12} have the same psl(4|4) Cartans and can only be distinguished by their B charge.

5 BRST cohomology for the singleton

Because of the large growth of states the results here are a bit limited.

Table 5: Number of states in cohomology for singleton representation of psl(2|2).

Table 6: Number of states in cohomology for singleton representation of psl(4|4).