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1 Introduction

In a talk in 2010 [1] Gopakumar suggested that there might exist dualities between field theories which

correspond to graph dualities of their Feynman diagrams. He called this open-open duality, in contrast to

open-closed string duality. As an example he gave the two different matrix models for 2d topological gravity:

the double-scaled Hermitian matrix model, where observables appear as vertices, and the Kontsevich matrix

model, where observables are associated to the faces of the graph expansion.

This open-open duality was demonstrated for complex matrix models in [2].

Setup here: In this note we consider the extension of [2] from one complex matrix to many complex

matrices with holomorphic observables, and then perturb by mixed operators that are effective vertices

for loop-corrections in N = 4 SYM. This is equivalent to restricting N = 4 SYM to the U(2) sector and

calculating correlation functions order-by-order in the coupling. Then we find the graph-dual matrix model,

including g2YM corrections.

Note that this sector is closed (only up to two loops or higher?), see [3].

The basic 2-complex-matrix model is

Z =

∫
etr[−XX

†−Y Y †+
∑∞
k=1

1
k (A◦X+C◦Y )k+

∑∞
k=1

1
k (B◦X

†+D◦Y †)k] (1 + g2YM : tr([X,Y ][X†, Y †]) : +O(g4YM )
)

(1)

The couplings to all possible (anti-)holomorphic multitrace operators are kept track of with Kontsevich-like

variables A,B,C,D.

The effective vertices for each loop order must be calculated by hand, which is complicated, and is only

known up to (3 or 4) loop orders.
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By inspection the dual graphs in this expansion have arbitrary valence, unlike the free theory which only

has vertices of even valency [2]. I think it’s true that for planar two-point functions we can restrict to 2- and

3-valent vertices.

Idea: Work out the graph dual theory in this sector.

Motivation: Tractible gauge/gravity dualities are of ‘F-type’ [1] like the Kontsevich model and Chern-

Simons theory. Perhaps the reason we’ve made no progress with AdS/CFT is that we’re starting from the

wrong point; we should transform to the graph dual theory. Then holes really correspond to closed string

vertex operators. See [4] for more motivation.

Basic (hopeful) conjecture: Perhaps the dual vertices required for the one-loop dual theory are

sufficient to determine the all-loop answer. In other words what is hard and horrible in V theory might be

simpler in the F theory.

Plan: Find dual theory for free theory (correctly conjectured in [2]). Then extend with 1-loop correction

and check result.

Haven’t been able to disprove conjecture’s extension to higher loops.

2 Duality for multiple complex matrices model in free theory

In this section we show the open-open dual for a model with two complex matrices and gYM = 0. This

proves a conjecture made in Appendix D of [2].

First we have to explain the notation in equation (1).

(A ◦X)IJ = AijX
e
f is the Kronecker matrix product of A and X so that I = e + (i − 1)N ∈ {1, . . . nN}

for i ∈ {1, . . . n} and e ∈ {1, . . . N}. In particular the trace has the property

tr(A ◦X) = tr(A) tr(X) (2)

Secondly we can sample all single-trace operators using

1

k
tr
[
(A ◦X + C ◦ Y )k

]
=

∑
µ1,µ2,[α]

1
|Sym(α)∩Sµ1×Sµ2 |

tr(α (A ◦X)µ1(C ◦ Y )µ2)

=
∑

µ1,µ2,[α]

1
|Sym(α)∩Sµ1×Sµ2 |

tr(α Aµ1Cµ2) tr(α Xµ1Y µ2) (3)

The sum is over all the holomorphic single-trace operators built out of µ1 X’s and µ2 Y ’s. α is a single

k-cycle α ∈ [k] ⊂ Sµ1+µ2
where k = µ1 + µ2. The trace with a permutation is defined by

tr(αXµ1Y µ2) = Xi1
iα(1)
· · ·Xiµ1

iα(µ1)
Y
iµ1+1

iα(µ1+1)
· · ·Y iµ1+µ2

iα(µ1+µ2)
(4)

It is unique up to conjugation α ∼ ρ−1αρ for ρ ∈ Sµ1 × Sµ2 so we only sum over conjagacy classes [α] for

this relation.

The coefficients of the holomorphic operators in equation (3) can be treated like couplings t, t for a

generalised Kontsevich-Miwa transformation

t{µ1,µ2,[α]} = 1
|Sym(α)∩Sµ1×Sµ2 |

tr(α Aµ1Cµ2)

t{µ1,µ2,[α]} = 1
|Sym(α)∩Sµ1×Sµ2 |

tr(α Bµ1Dµ2) (5)

The matrices A,B,C,D do not commute and are not diagonalisable, unlike the single complex matrix case.

For a single cycle Sym(α) ∼= Zk. Some examples:

ttr(Xk) = 1
k tr(Ak) ttr(X2Y 2) = tr(A2C2)

ttr(Y k) = 1
k tr(Ck) ttr(XYXY ) = 1

2 tr(ACAC)
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2.1 Derivation of dual model

To proceed to the dual model, integrate in and out matrices just like in Section 2 of [2]

Z =

∫
exp tr

[
−XX† − Y Y † +

∞∑
k=1

1

k
(A ◦X + C ◦ Y )k +

∞∑
k=1

1

k
(B ◦X† +D ◦ Y †)k

]

=

∫
exp tr

[
−XX† − Y Y †

] 1

det [1− (A ◦X + C ◦ Y )]

1

det [1− (B ◦X† +D ◦ Y †)]

=

∫
exp−

[
tr(XX† + Y Y †) + Pie(I−AijXe

f − CijY ef )P †jf +Qie(I−BijX†ef −Di
jY
†e
f )Q†jf

]
=

∫
exp−

[
(Xe

f −Q†jeQifBij)(X†fe − P †lfPkeAkl ) + (Y ef −Q†jeQifDi
j)(Y

†f
e − P †lfPkeCkl )

+PieP
†ie +QieQ

†ie −Q†jeQifBijP †lfPkeAkl −Q†jeQifDi
jP
†lfPkeC

k
l

]
=

∫
exp−

[
PieP

†ie +QieQ
†ie −Q†jeQifBijP †lfPkeAkl −Q†jeQifDi

jP
†lfPkeC

k
l

]
=

∫
exp−

[
(F lj −QifBijP †lf )(F †jl −Q

†jePkeA
k
l ) + (Glj −QifDi

jP
†lf )(G†jl −Q

†jePkeC
k
l )

+PieP
†ie +QieQ

†ie −Q†jeQifBijP †lfPkeAkl −Q†jeQifDi
jP
†lfPkeC

k
l

]
=

∫
exp−

[
tr(FF † +GG†) + PieP

†ie +QieQ
†ie − Pke(Akl F lj + Ckl G

l
j)Q

†je −Qif (BijF
†j
l +Di

jG
†j
l )P
†lf
]

=

∫
exp tr

[
−FF † −GG†

] 1

det

[
1−

(
0 AF + CG

BF † +DG† 0

)]N
=

∫
exp tr

[
−FF † −GG† +N

∞∑
k=1

1

k

(
0 AF + CG

BF † +DG† 0

)k]

=

∫
exp tr

[
−FF † −GG† +N

∞∑
k=1

1

k

(
(AF + CG)(BF † +DG†)

)k]
(6)

This model was predicted in Appendix D of [2].

3 Dual model with loop correction

Now consider inserting into the above derivation an effective vertex tr(XY Y †X†) with coefficient θL4 where

θ2 = 0 and L is a matrix with tr(L4) = g2YM .

NB: haven’t normal ordered tr(XY Y †X†).
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We proceed with one eye on the dynamical graph duality

Z =

∫
exp tr

[
−XX† − Y Y † +

∞∑
k=1

1

k
(A ◦X + C ◦ Y )k +

∞∑
k=1

1

k
(B ◦X† +D ◦ Y †)k + θL4 ◦XY Y †X†

]

=

∫
exp tr

[
−XX† − Y Y † + θL4 ◦XY Y †X†

] 1

det [1− (A ◦X + C ◦ Y )]

1

det [1− (B ◦X† +D ◦ Y †)]

=

∫
exp−

[
tr(XX† + Y Y †) + Pie(I−AijXe

f − CijY ef )P †jf +Qie(I−BijX†ef −Di
jY
†e
f )Q†jf

+ tr(RR† + SS† + TT † + UU†)− θ1UieLijY †efR†jf − θ2RLX†S† − θ3SLXT † − θ4TLY U†
]

=

∫
exp−

[
(Xe

f −Q†jeQifBij − θ2S†jeRifLij)(X†fe − P †lfPkeAkl − θ3T †lfSkeLkl )

+ (Y ef −Q†jeQifDi
j − θ1R†jeUifLij)(Y †fe − P †lfPkeCkl − θ4U†lfTkeLkl )

+ PieP
†ie +QieQ

†ie −Q†jeQifBijP †lfPkeAkl −Q†jeQifDi
jP
†lfPkeC

k
l

+ tr(RR† + SS† + TT † + UU†)

−Q†jeQifBijθ3T †lfSkeLkl − θ2S†jeRifLijP †lfPkeAkl − θ2S†jeRifLijθ3T †lfSkeLkl
−Q†jeQifDi

jθ4U
†lfTkeL

k
l − θ1R†jeUifLijP †lfPkeCkl − θ1R†jeUifLijθ4U†lfTkeLkl

]
(7)

Not really sure whether we want to allow these θ1θ4 and θ2θ3 terms. Do they correspond to self-

contraction?

=

∫
exp−

[
(F lj −QifBijP †lf − θ′2RLP † − θ′3QBT †)(F †

j
l −Q

†jePkeA
k
l − θ′2S†PA− θ′3QSL)

+ (Glj −QifDi
jP
†lf − θ′4QDU† − θ′1ULP †)(G†

j
l −Q

†jePkeC
k
l − θ′4Q†TL− θ′1R†PC)

+ PieP
†ie +QieQ

†ie −Q†jeQifBijP †lfPkeAkl −Q†jeQifDi
jP
†lfPkeC

k
l

+ tr(RR† + SS† + TT † + UU†)

−Q†jeQifBijθ3T †lfSkeLkl − θ2S†jeRifLijP †lfPkeAkl
−Q†jeQifDi

jθ4U
†lfTkeL

k
l − θ1R†jeUifLijP †lfPkeCkl

]
(8)

Vaguely θ′i
2 = θi is only nonvanishing. Also have θ′1θ

′
4 = 0?

=

∫
exp−

[
tr(FF † +GG†) + (P,Q,R, S, T, U)(1−M)(P †, Q†, R†, S†, T †, U†)

]
=

∫
exp tr

[
−FF † −GG†

] 1

det [1−M ]
N

=

∫
exp tr

[
−FF † −GG† +N

∞∑
k=1

1

k
(M)

k

]
(9)

M =



0 AF + CG θ′1CG θ′2AF 0 0

BF † +DG† 0 0 0 θ′3BF
† θ′4DG

†

θ′2LF
† 0 0 0 0 0

0 θ′3LF 0 0 0 0

0 θ′4LG 0 0 0 0

θ′1LG
† 0 0 0 0 0


(10)

Note that M is linear in the fields and tr(M) = 0.

1

2
tr(M2) = tr

[
(AF + CG)(BF † +DG†) + θ′1θ

′
2CGLF

† + θ′3θ
′
4LGBF

†] (11)
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These are correct quadratic terms for (18).

1

3
tr(M3) = tr

[
(AF + CF )θ′4DG

†θ′1LG
† + θ′2AFθ

′
3LF (BF † +DG†)

]
(12)

These are correct cubic terms for (18).

4 Checks

Ntr
[
(A+ L)F (B + L)F † + (A+ L)F (D + L)G† + (C + L)G(B + L)F † + (C + L)G(D + L)G†

+(AF + CG)(DG† + iBF †)(LF † + iLG†) + (BF † +DG†)(CG+ iAF )(LF + iLG)
]

(13)

Adding cubic terms to 2C MM captures the tree and 1-loop partition function. Hope: perhaps it’s correct

at higher loops too, given how different it looks to dual model.

Consider the planar term of the 1-loop correction〈
XXY Y, : [X,Y ][X†, Y †] :, X†X†Y †Y †

〉
= −2N5 + 2N3 (14)

The two planar contributions come from〈
XXY Y :, XY Y †X† :, X†X†Y †Y †

〉
= N5 +O(N3) (15)

and 〈
XXY Y, : Y XX†Y † :, X†X†Y †Y †

〉
= N5 +O(N3) (16)

NB coupling for X2Y 2 is A2C2 and for XYXY is 1
2ACAC.

Another approach: given that we’ve added g2YM tr(: [X,Y ][X†, Y †] :) as a vertex in original model, we

want it to be a face now in dual model, i.e. perhaps introduce matrix L with tr(L4) = g2YM .

This would also require even vertices like tr(AFLG†). Would need mixed tr(AACCL) = 0 and tr(L4) =

g2YM , which could be achieved with L = diag(0n,
√
gYM ).

For example for (15) the following contains the correct diagram

− LFDg,AFLg,CGBf,AFBfLf,DgCGLG = −AACC,BBDD,LLLL (17)

and for (16) the following contains the correct diagram

−AFDg,LGBf,CGLf,CGDgLg,BfAFLF = −AACC,LLLL,BBDD (18)

The factor two comes from the symmetric factors.

Similarly we find

1

2
CGBf,CGBf,AFDg,AFDgdf,DgCGcF = · · · 21

2
CdDc,BDBD,CAAC (19)

and
1

2
CGBf,AFDg,AFDg,CGBfbg,BfAFaG = · · · 21

2
CCAA,BaAb,BDBD (20)

Together these give the planar result〈
XYXY, : [X,Y ][X†, Y †] :, X†X†Y †Y †

〉
= 4N5 − 4N3 (21)

Similarly

1

2
CGBf,CGBf,AFDg,AFBfbg,DgAFaG = · · · 21

2
CACA,BBDD,AbBa (22)
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and
1

2
CGBf,AFDg,AFDg,CGDgdf,BfCGcF = · · · 21

2
CdDc,BBDD,ACAC (23)

For 〈
XYXY, : [X,Y ][X†, Y †] :, X†Y †X†Y †

〉
= −8N5 + 8N3 (24)

we must have:

−AFDg,AFLg, LFDg,CGBfLf,BfCGLG = − 4

2× 2
ACAC,LLLL,BDBD, (25)

and

− CGBf,LGBf,CGLf,AFDgLg,DgAFLF = − 4

2× 2
CACA,BDBD,LLLL, (26)

5 Philosophy

3-valent is the rule, like Kontsevich etc. Cover all with 3-valent from 1-loop vertices, everything else is filler

for pathological free theory, to get operators.

6 All vertices of dual model in permutations

In old complex MM, have only 2-valent faces for planar 2 point function. Add single 4-valent for planar 3pt

function and two 4-valent or one 6-valent for extremal planar 4pt function or torus 2pt function.

Switch to Hermitian way of looking at things, i.e. 2n indices and 2-cycle for each contraction. Now 1-loop

should appear as two 3-cycles?

7 Onwards to higher loops

Try restricting to SU(2)R sector. This sector should be closed under dilatation (need three complex scalars

to get mixing with fermions).

0303060, see equation (1.14) for higher loop effective vertices.

Also Bellucci et al 0505106 equation (6)

: tr([[X,Y ], Ỹ ][[X̃, Ỹ ], Y ]) : + : tr([[X,Y ], X̃][[X̃, Ỹ ], X]) : + : tr([[X,Y ], T a][[X̃, Ỹ ], T a]) :

=: tr([[X,Y ], Ỹ ][[X̃, Ỹ ], Y ]) : + : tr([[X,Y ], X̃][[X̃, Ỹ ], X]) : +2N : tr([X,Y ][X̃, Ỹ ]) : (27)

For U(N) on latter line have (T a)ij(T
a)kl = δilδ

k
j ; for SU(N) it is (T a)ij(T

a)kl = δilδ
k
j − 1

N δ
i
jδ
k
l .

The first two terms come from genuine 3-legged interaction terms. The last is from a two-leg term with

an internal loop.

NB higher-order vertices in dual model account for non-planarity, NOT for higher loops.

Probably will need all corelation functions with overall factor g−2YM and then tr(L2p) = g2pYM .

See Appendix C of 0303060 for two disconnected copies of 1-loop vertiex, something to do with (log)2

for conformal invariance.

this isn’t quite what we want. Should be face i.e. closed string op for every 3-valent vertex with coefficient

gYM? We get these higher-order vertices from elaborate SUSY cancellations don’t we?
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