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IIB superstrings on AdS5 × S5

1

α′

∫
dτdσ [ non-linear σ-model ]

Perturbative expansion in the string coupling gs



N = 4 SUSY Yang-Mills: a Conformal Field Theory

N

λ

∫
d4x tr

[
FµνF

µν + DµφiDµφi − [φi , φj ][φi , φj ]

+ψσµDµψ − ψφψ
]

+ θ

∫
d4x tr[Fµν F̃

µν ]

Gauge group U(N); fields in adjoint. Compute correlation
functions of gauge-invariant local operators.



The AdS/CFT correspondence

{
IIB superstrings on

AdS5 × S5

}
=

{
N = 4 SUSY

Yang-Mills in 4d

}

R2

α′
=
√
λ

gs =
λ

N

bosonic symmetries SO(2, 4)× SO(6) match



The Planar Limit

AdS/CFT has been successfully studied in the planar limit.
λ fixed, N →∞ ⇒ gs → 0.

I Single-trace local operators in N = 4 SYM.

I Classical string theory in bulk for strict N →∞ limit.

I Beautiful story of spinning strings, spin chains and
integrability.



Parameter space



General Programme

We want to study AdS/CFT at finite N.

I Multi-trace and determinant-type operators in CFT.

I Must deal with Stringy Exclusion Principle.

I Correlation functions involve complicated combinatorics.

I Non-perturbative quantum gravity effects in the bulk, giant
graviton branes, black holes.



Beasts of the field

In N = 4 super Yang-Mills the fields are

X ,Y ,Z ,X †,Y †,Z †;λA
α, λ̄

A
α̇; Fµν plus derivatives Dµ

Each field is in the adjoint of the gauge group U(N)

(Wa)i
j

i , j = 1, 2 . . .N.
a runs over different fields.

To get gauge-invariant operators, usual route is to multiply these
N × N matrices together and take traces

: tr(XYX †) tr(YZ ) tr(Y †) : = X i1
i2

Y i2
i3

X †i3i1 Y i4
i5

Z i5
i4

Y †i6i6



Stringy Exclusion Principle

For an N ×N matrix A, traces of powers bigger than N can always
be written in terms of traces of powers ≤ N

tr(AN+p) = # tr(AN) tr(Ap) + # tr(AN−1) tr(Ap) tr(A) + · · ·

For example, if N = 2 for the 2× 2 matrix A =

(
a b
c d

)

tr(A3) =
3

2
tr(A2) tr(A)− 1

2
tr(A) tr(A) tr(A)

So working with traces is problematic...



Correlation functions

Wick contract with, e.g.,〈
X i

j (x) X †kl (y)
〉

= δil δ
k
j

1

(x − y)2

Even at tree level this gives a complicated 1
N expansion〈

tr(XXXX )[x ] tr(X †X †X †X †)[y ]
〉

=
(
4N4 + 20N2

) 1

(x − y)8〈
tr(XXXX )[x ] tr(X †X †) tr(X †X †)[y ]

〉
=
(
16N3 + 8N1

) 1

(x − y)8

Mixing between different trace structures is only suppressed when
the length n < N. [For giant graviton ∆ ∼ N, black hole ∆ ∼ N2.]



Outline of method

Solution: group theory.

Organise multi-trace operators of N = 4 SYM at finite N into reps
of the global symmetry group and reps of the local gauge group
(which will control multi-trace structure à la Wilson loop).

1. Start with n fields with none of their indices contracted

(Wa1)i1
j1

(Wa2)i2
j2
· · · (Wan)in

jn

2. Build into reps of G and U(N).

3. Enforce gauge invariance.
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Technical slide 1/4: Example of U(2)

Take the fundamental representation VF of U(2)

VF =

(
X
Y

)

and then consider the simplest tensor product

VF ⊗ VF

We can re-arrange into irreducible reps of U(2)

(
X
Y

)
⊗
(

X
Y

)
=

 X ⊗ X
X ⊗ Y + Y ⊗ X

Y ⊗ Y

⊕ ( X ⊗ Y − Y ⊗ X
)

⊗ = ⊕
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Technical slide 2/4

We hit a problem with three copies of the fundamental

V⊗3
F =

(
X ⊗ X ⊗ X

...

)
⊕

(
X ⊗ X ⊗ Y − X ⊗ Y ⊗ X

...

)

⊕

(
X ⊗ X ⊗ Y − Y ⊗ X ⊗ X

...

)

In terms of Young diagrams

⊗ ⊗ = ⊕ 2

How do we account for this multiplicity?



Technical slide 3/4: Schur-Weyl duality

For V⊗n
F , an n-tensor products of the fundamental of U(K ), there

are two commuting group actions:

I U(K ): the action of U(K ) on its fundamental rep

I Sn: permutes the n different copies of VF

So organise V⊗n
F in terms of representations of the two groups:

V⊗n
F ≡

n︷ ︸︸ ︷
⊗ ⊗ · · · ⊗ =

⊕
Λ

V
U(K)
Λ ⊗ V Sn

Λ

where Λ runs over Young diagrams with n boxes and at most K
rows.

[To answer question: dim V S3 = 2. ]
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Technical slide 4/4: Clebsch-Gordan coefficients

We can express this map from V⊗n
F to reps of U(K ) and Sn using

Clebsch-Gordan coefficients C .

C : V⊗n
F → V

U(K)
Λ ⊗ V Sn

Λ

C i1i2...in
Λ,MΛ,mΛ

Wi1 ⊗Wi2 ⊗ · · · ⊗Win = |Λ,MΛ,mΛ〉

I ik = {1, 2, . . .K} (for U(2), W1 = X , W2 = Y )

I MΛ labels U(K ) state in V
U(K)
Λ

I mΛ labels Sn state in V Sn
Λ

I Clebsch map is invertible



The solution: use C-G coefficients

Consider operators with n fields, a generic example being

(Wa1)i1
j1

(Wa2)i2
j2
· · · (Wan)in

jn

where {Wa} are the fields of a subsector G ⊂ PSU(2, 2|4).

Combine indices into rep of G × Sn and two of U(N)× Sn

|Λ(G ),MΛ,mΛ〉 ⊗ |R(U(N)),MR ,mR〉 ⊗
∣∣S̄(U(N)),MS ,mS

〉
= C a1...an

Λ(G),MΛ,mΛ
C i1...in

R(U(N)),MR ,mR
C j1...jn

S̄(U(N)),MS ,mS
(Wa1)i1

j1
· · · (Wan)in

jn

I Enforce gauge invariance: pick singlet 1 ∈ R ⊗ S̄
(implies R = S , sum over MR = MS)

I Impose overall Sn invariance



Simplest example: Half BPS Schur polynomials

For the U(1) sector we only have one field: X . Thus we get∑
MR ,mR

C i1...in
R(U(N)),MR ,mR

C j1...jn
R̄(U(N)),MR ,mR

X i1
j1
⊗ · · · ⊗ X in

jn

=
1

n!

∑
α∈Sn

χR(α) X i1
iα(1)

X i2
iα(2)
· · ·X in

iα(n)

≡ χR(X )

I U(N) rep R organises multi-trace structure (cf. Wilson loop).

I Encode finite N stringy exclusion principle, since reps of U(N)
have at most N rows.

I For n ∼ N map to giant gravitons, in general to LLM-type
geometries.

I Can gain qualitative understanding of black hole microstates.



Diagonal Schur polynomials

Diagonal 2-point function〈
χR(X (x)) χS(X †(y))

〉
= δRS DimN R

1

(x − y)2n

DimN R is the U(N) dimension of R. It capture the N expansion,
e.g.

DimN =
N2(N + 1)(N + 2)(N − 1)N(N − 2)

45

The half-BPS sector is not renormalised, so this holds for all values
of the coupling λ. This will not be true in general...



Subsectors

We can do this classification for the following sub-sectors
G ⊂ PSU(2, 2|4) of the global superconformal symmetry group
(and product groups G1 × G2) :

half BPS U(1) : {Wm} = {X}
U(3) : {Wm} = {X ,Y ,Z}

U(3|2) : {Wm} = {X ,Y ,Z ;ψ1, ψ2}
O(2) : {Wm} = {X ,X †}
SL(2) : {Wm} = {X , ∂X , ∂2X , ∂3X , . . . }

SO(2, 4) : {Wm} = {X , ∂µX , ∂µ∂νX , . . . }



Operator for general G

rep and state of G

O
[ ︷ ︸︸ ︷

Λ (G ), MΛ, R (U(N)), τ
]

��
R of U(N) gives multi-trace structure

AK
(multiplicity)

I Complete basis on space of multi-trace operators at finite N
built out of fundamental fields of G .

I Free 2-point function totally diagonal on all labels,
proportional to DimN R.

I Operators given in detail for G = U(3), SL(2),O(2),SO(2, 4),
prescription given for SO(6).

I For SL(2), in regime of large quantum numbers, spectrum of
our basis matches excitations of (non-BPS) giant gravitons.



One loop

At one loop this basis is no longer diagonal. Operators mix and we
must rediagonalise. Multiplets also re-organise in a highly
non-trivial way. Take for example the U(2) sector, Λ = .

The 1
4 -BPS operators, which are protected, are in 1-to-1

correspondence with the chiral ring and receive 1
N corrections, e.g.

tr(XX ) tr(YY )− tr(XY ) tr(XY )− 1

N
tr([X ,Y ][X ,Y ])

Some operators are no longer protected and join long multiplets

tr([X ,Y ][X ,Y ]) ∆ = 4 +
3λ

4π2
+O(λ2)

(This becomes a descendant of the Konishi.)



Constrained mixing at one loop

Analyse mixing with one-loop dilatation operator, e.g. U(2) sector

: tr([X ,Y ][X̃ , Ỹ ]) :

X̃ ∼ ∂
∂X . This gives matrix of anomalous dimensions.

The U(N) representations, controlling multi-trace structure, then
only mix if related by repositioning a single box.

R = × mixes with S =
×

but not with T =



Free three-point function
We can also use this formalism to work out the free non-extremal
three-point function〈

O[Λ1,R1](x1) O[Λ2,R2](x2) O[Λ3,R3](x3)
〉

Λ1

Λ3

Λ2

K2

K1

K3



Three-point gauge spin network
On the legs between the operators the gauge group representations
need not form a singlet. The three-point function becomes a
G × U(N) spin network.

R2, R2

R3, R3

R1, R1

U3, V3 U2, V2

U1, V1



Conclusions

I For sectors G of N = 4 global symmetry group multi-trace
operators organised into a complete basis that transforms in
irreps of G , traces organised by U(N) irreps.

I This basis diagonalises the free two-point function, including
all finite N corrections.

I One-loop mixing nicely constrained.

I Higher-point functions in free theory form G × U(N) spin
networks. (Free theory ∼ finite N tensionless ‘string’.)

I Focus in future:
I Extend to full PSU(2, 2|4) symmetry group.
I Diagonalise spectrum at 1-loop.
I Sixteenth-BPS states: how do they furnish black hole entropy?
I Understand information loss.
I What is string theory?


