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N = 4 SUSY Yang-Mills: a Conformal Field Theory

N
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Gauge group U(N); fields in adjoint. Compute correlation
functions of gauge-invariant local operators.
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The AdS/CFT correspondence

{ IIB superstrings on } B { N =4 SUSY }

AdSs x S° Yang-Mills in 4d
R2
o=V
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bosonic symmetries SO(2,4) x SO(6) match



The Planar Limit

AdS/CFT has been successfully studied in the planar limit.
A fixed, N — 0o = g — 0.

» Single-trace local operators in N' = 4 SYM.
» Classical string theory in bulk for strict N — oo limit.

» Beautiful story of spinning strings, spin chains and
integrability.
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General Programme

We want to study AdS/CFT at finite N.

v

Multi-trace and determinant-type operators in CFT.

v

Must deal with Stringy Exclusion Principle.

v

Correlation functions involve complicated combinatorics.

v

Non-perturbative quantum gravity effects in the bulk, giant
graviton branes, black holes.



Beasts of the field

In A/ = 4 super Yang-Mills the fields are
X, Y, Z, X1, YT, ZU A XA Fu plus derivatives D),
Each field is in the adjoint of the gauge group U(N)
(Wan)j

ihj=1,2...N.
m runs over different fields.

To get gauge-invariant operators, usual route is to multiply these
N x N matrices together and take traces

tr(XYXN) tr(YZ2) tr(YT) s = X2 Y2 XTB viezh yie —

Is g



Correlation functions

Wick contract with, e.g.,

1

<in(X) XT;((Y)> = 55#@

Even at tree level this gives a complicated % expansion

<tr(XXXX)[X] tr(XTXTXTXT)[y]> = (X4_N;)8 (1 + ,32)

4
(0000 (XX tr(XTXT)y]) = (X4_Ny)8 </L\1/ + /\i)

Mixing between different trace structures only suppressed when the
op. length n < N. [For giant graviton n ~ N, black hole n ~ N2 ]



Stringy Exclusion Principle

For an N x N matrix A, traces of powers bigger than N can always
be written in terms of traces of powers < V.

For example, if N = 2 for the 2 x 2 matrix A = ( i 3 )

tr(A%) = g tr(A?) tr(A) — % tr(A) tr(A) tr(A)

So working with traces is problematic for operators with A > N ...



Operators with multiple fields

Trace the same field content (e.g. for U(2) rep H} ) and you get

[X,Y][X, Y] [X,Y][X,Y]
L] | <

tr( ) tr( )
= tr([X, Y][X,Y]) =0

[X,Y] [X,Y] [X,Y] [X,Y]

] =

tr( tr( ) tr( - )tr( )

=0 = tr(P"P*)tr(P, d;)

where ®P®, = PId,d, = [X, Y].



Solution: separation

Separate:

> Representation of global symmetry group PSU(2,2|4), which
organises field content and its symmetrisation

from

» Trace structure, which it turns out will involve the
representation theory of the gauge group U(N)
The permutation group S, plays a vital role.

Simplest to see for half-BPS case, where the representation of the
global symmetry group is trivial.



Half BPS operators: only trace structure

Here we have only one type of field: X. Multi-trace ops labelled by
(conjugacy classes of ) elements of the symmetric group S,,.

E.g. tr(XX)tr(XX) can be written using oo = (12)(34) € Sa4

tr(XX) tr(XX) = X2 X2 O XB Xk o= XD X2 XEXE

(1) la(2)  a(3) ’a(4): i is Vi3

tr(aX®4) = XXXX = x@d

ioe)



The Schur polynomials

Define linear change of basis to Schur polynomials

) = LS el XK

| ' a(1) ’a(2) lau(n)
a€ESy

R is Young diagram of n boxes: rep both of U(N) and S,, sorts
multi-trace structure (cf. Wilson loop). 2-pt function diagonal

(Xr(X9) x5(X')) = Ogs Dim R

Dimy R is U(N) dimension of R; it capture the N expansion, e.g.

o N2(N+1)(N +2)(N — 1)N(N — 2)
H = 45

DimN

(The half-BPS sector is not renormalised, so this holds for all
values of the coupling A. This will not be true in general...)



Physical meaning of Schur polynomials

» Encode finite N stringy exclusion principle, since reps of U(N)
have Young diagrams with at most N rows.

» Row-lengths ~ N occupied energy levels of free fermions from
complex matrix model.

» For n ~ N map to giant gravitons, single column [1"] to giant
in S°, single row [N] in AdSs. General: LLM-type geometries.

» Can gain qualitative understanding of black hole microstates.
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Outline of method for multiple non-commuting fields

Solution: group theory.

Organise multi-trace operators of N' =4 SYM at finite N into reps
of the global symmetry group and reps of the local gauge group
(which will control multi-trace structure a la Wilson loop).

1. Start with n fields with none of their indices contracted

(Wi )} (Wan)Z - (Wan,)jr

2. Build into reps of G and U(N).

3. Enforce gauge invariance.



Technical slide 1/4: Example of U(2)

Take the fundamental representation Vf of U(2)

(%)



Technical slide 1/4: Example of U(2)

Take the fundamental representation V of U(2)

()

and then consider the simplest tensor product
VE® VE
We can re-arrange into irreducible reps of U(2)

X X X®X
® XR@Y+YoX |o(XoY-YeX)
14 Y
Yoy

0o ® o = N b H



Technical slide 2/4

We hit a problem with three copies of the fundamental

X®X®X XoX0Y-XoYeX
®3 _
VEs = _ o .

<X®X®Y—Y®X®X>
® .

In terms of Young diagrams

o ® o ® o = oo o 2

How do we account for this multiplicity?



Technical slide 3/4: Schur-Weyl duality

For V2", an n-tensor products of the fundamental of U(K), there
are two commuting group actions:

» U(K): the action of U(K) on its fundamental rep

» S,: permutes the n different copies of V¢



Technical slide 3/4: Schur-Weyl duality

For V2", an n-tensor products of the fundamental of U(K), there
are two commuting group actions:

» U(K): the action of U(K) on its fundamental rep

» S,: permutes the n different copies of V¢

So organise VEQ" in terms of representations of the two groups:

n
VE" = geg®- - @V @ v

where A runs over Young diagrams with n boxes and at most K
rows.

[To answer question: dim Vﬁj =2.]



Technical slide 4/4: Clebsch-Gordan coefficients

We can express this map from VE-@” to reps of U(K) and S, using
Clebsch-Gordan coefficients C.

C: V,?" — VAU(K) ® VAS"

v

me=1{1,2,...K}  (for U(2), Wy = X, Wy =Y)

v

My labels U(K) state in V,(j(K)

v

ap labels S, state in VAS"

v

Clebsch map is invertible



The solution: use C-G coefficients

Consider operators with n fields, a generic example being

(Wml)ﬁ (Wm2 Z (Wmn)J’:

where {W,,} are the fields of a subsector G C PSU(2,2/4).
Combine indices into rep of G x S, and two of U(N) x S,

mi...mp i...in j1---Jn li in
C/\(IG),M/\,Q/\ CRI(U(N)),MR,QR CSI(U(N)),MS,QS (Wml _[i e (Wmn)_]n

» Enforce gauge invariance: pick singlet 1 €¢ R® S
(implies R = S, sum over Mg = Ms)

» Impose overall S, invariance



Operator for general G
rep and state of G

—_—
O[A(G), Mp, R(U(N)), 7]
/ \

R of U(N) gives multi-trace structure (multiplicity)

» Complete basis on space of multi-trace operators at finite N
built out of fundamental fields of G.

» Free 2-point function totally diagonal on all labels,
proportional to Dimy R.

» Operators given in detail for G = U(3), SL(2),0(2),50(2, 4),
prescription given for SO(6).

» For SL(2), in regime of large quantum numbers, spectrum of
our basis matches excitations of giant gravitons.



Partition function at finite

At finite N we have for the free theory

oo

= ex 1 x™Mtr(UH™tr U™
Zu= [l p{sz( Jur(U1) tU}

m=1
where f(x) is the character for the fundamental fields; for U(K)
this is just the trace of the matrix
f(x)= Xf_-j(K)(x) =x1+x2+ -+ XK
Expanding we match exactly the coefficient of each irrep of G
WL ¥ SRR u)
n AU(K)) R

where C(R, R, ) is the number of times A appears in the
symmetric group tensor product R ® R.



Subsectors

We can do this classification for the following sub-sectors
G C PSU(2,2|4) of the global superconformal symmetry group
(and product groups G; x G3) :

half BPS U(1) :
(3):
U(3J2) :
(2):
(6)
R)
4)

U

SO

SL(2,
50(2,

6):

{Wmn}
{Wmn}
{Wmn}
{Wmn}
{Wn}
{Wamn}
{Wamn}

={X}

={X,Y,Z}

={X.,Y,Z; {1,192}

= {X7XT}
={X,v,zZ,Xt, vyl z1}
= {X,0X,0°X,03X,...}
={X,0,X,0,0,X,...}



More complicated example: SL(2, R)
Take arbitrarily many derivatives of a field {W,,} = {0™X}

OMXQ0™X @ - ®0™X

In V2" sort into ops with k = mq + - - - + m, derivatives (spread
out across the n sites) and remove all descendants of form DP(---)

oM D =00 1+ 92 4 ...4 90

o) _ 5(2)
\

o) ) — o)

Hln-1) _ g(n)

This is split of the canonical permutation rep Vjat of S, into the
trivial and the ‘standard’ rep Vhat = Vi @ Vjp_1,1-

Build HWS of SL(2,R) with V|,_y 1] (i.e. the differences).



Free three-point function

We can also use this formalism to work out the free non-extremal
three-point function

<(’)[I\1, Ril(x1) O[A2, Ro](x2) O[As, R3](X3)>




Three-point gauge spin network

On the legs between the operators the gauge group representations
need not form a singlet. The three-point function becomes a
G x U(N) spin network. Also extends to one-loop...

R, By

_“ 7 R3, R3
RQ,RQ U17‘/1



One loop two-point function

At one loop this basis is no longer diagonal. Operators mix and we
must rediagonalise. Multiplets also re-organise in a highly
non-trivial way. Take for example the U(2) sector, A =[].

Some operators are no longer protected and join long multiplets

3\

(X YIX YD) A=d+

+0(N\?)
(This is a descendant of the Konishi at weak coupling.)

The %—BPS operators, which are protected, are in 1-to-1

correspondence with the chiral ring and receive % corrections, e.g.

tr(®7%) tr(d,d3) + %tr([X, YIX, Y])



Action of dilatation operator
Analyse mixing with one-loop dilatation operator, e.g. U(2) sector

tr([X, Y][X, Y]) :

X ~ %. This gives matrix of anomalous dimensions.

Write its action on two sites by introducing extra (n + 1)th index

k &k

11 19 11 12 1 )
1 ]

tr(XYXy) X v = X Y = X Y
——

J1 Ja J J2 J Ja



Constrained mixing at one loop

Operators now mix via (n + 1)-box U(N) reps T.

The U(N) n-box representations R and S, controlling multi-trace
structure, then only mix if they both fit into the same (n + 1)-box
rep T, i.e. R and S must be related by repositioning a single box.

R: x}‘

mixes with 5

but not with S5

[ 1]

via




Solution for commuting matrices

% and %—BPS ops at weak coupling in chiral ring built from

symmetrised traces, i.e. commuting matrices. Characterise in
terms of symmetric functions of eigenvalues. Still transform under

®
Sy C U(N); want invariants of this group from (Vfa"{) "

mi...mp e1...en €1 €& . y€n
CACC) Mn.an CINI(SI)A(S)an X X " X,

ei € {1,2,... N}. Generating function for multiplicity at finite N

i 1 2y LL-BPS
_ 1
H 1 —uxmyn _ZV ZN (X’y)
m,n=0 N=0

1.gps . SyXSh
Zy 0 T (xy)= Z dun[,(‘l’f/\ XA(x,y)
A of U(2)

Map combinatorics to supergravity geometries a la LLM?



Conclusions

» To study many phenomena in AdS/CFT need N finite.

» Organised multi-trace ops into complete basis that transforms
in irreps of GC PSU(2,2|4), traces sorted by U(N).

» This basis diagonalises the free two-point function, including
all finite N corrections. Higher-point functions also simple.

» One-loop mixing highly constrained.

> % and %-BPS ops in chiral ring characterised in terms of
functions of eigenvalues of fields.

» Focus in future:

Clarify field versus bulk description of % and %—BPS states.

String theory dual to zero/weakly-coupled field theory.

Diagonalise spectrum at 1-loop.

Sixteenth-BPS states: how do they furnish black hole entropy?
Understand information loss.

v

v vy VvYy



