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We want to understand how gauge theories are rewritten as string theories at the pertu-

bative level.

1. How is an integral over the stringy moduli space of a punctured Riemann surface

encoded in the gauge theory?

2. How is the discreteness of Feynman diagrams (i.e. finite numbers of vertices and

propagators) realised in the string theory?

There have been two answers in the literature:

1. Either Feynman diagrams with an increasing number of interaction vertices join up to

form a continuous worldsheet (à la double-scaled matrix model [1, 2, 3]);

2. Or they cover the moduli space, with the gauge theory providing some kind of measure

on the moduli space (à la Penner [4] or Kontsevich [5] models).

Here we concentrate on the latter option.

Question: What is the measure? And how does it relate to operator insertions?

In a series of papers in the mid-00’s Gopakumar [6, 7, 8] conjectured that for the free

theory one could define a measure on the moduli space à la Penner related to momentum

on the propagators in the Feynman diagrams.

An alternative possibility raised for Hermitian matrix models by Chekhov and Makeenko

[9], Razamat [10, 11], de Mello Koch and Ramgoolam [12], Gopakumar [13] and others is

that, at least for these matrix models, the measure might be discrete, with contributions

coming only from Riemann surfaces defined over the algebraic numbers Q.

It is possible this discrete measure is also there for general free quantum field theories with

spacetime dependence. The spacetime dependence of each Feynman diagram is then just a

multiplying factor, not related to the measure on moduli space as in the earlier Gopakumar

papers [6, 7, 8].

Thus the discreteness of the gauge theory translates into a discreteness on the moduli

space.
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The following conjecture is for how this discreteness might arise from a continuous string

model.

Conjecture: Free gauge theories can be expressed as some kind of A-model-like inte-

gration over some moduli space of maps from worldsheets into some space. There is a U(1)

action on this moduli space. The integral over moduli space can then be computed using

localisation with respect to this U(1) action. The fixed points are discrete and correspond

exactly to the Feynman diagrams.

Example: The A-model on CP1. Kontsevich [14] showed that the U(1) action of rota-

tions of the sphere lift to the moduli space of holomorphic maps into CP1 form the worldsheet,

Mg,n(CP1). The fixed points in this space are labelled by bipartite dessin d’enfants, which

are exactly the Feynman diagrams of the complex Z-model from [15]. The integral over the

moduli space reduces to a weighted sum over these fixed points.

[Note that this localization is independent of the first A model localization of the path

integral onto just holomorphic maps.]

For the vanilla AdS/CFT correspondence it would be interesting to pursue this idea

for the A model on spaces with PSU(2, 2|4) symmetry, such as the coset U(2, 2|4)/U(1) ×
U(1, 2|4), the non-compact cousin of CP3|4. Or the moduli space of flat PSU(2, 2|4)-bundles

over a particular Riemann surface.

For interacting quantum field theories one would expect the discreteness to be washed out

with increasing numbers of interaction points, so that one recovered a continuous integration

over the moduli space for large λ.
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