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The Challenge



With only wind and solar, need long-duration storage l'ﬁ
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Variability of wind and solar
requires storage for multiple days

Batteries cost 150-250 €/kWh,
only suitable for a few hours

Hydrogen pressure vessels cost
15-50 €/kWh, still too expensive

Underground salt caverns for
hydrogen cost 0.1-0.5 €/kWh,
suitable for long-duration storage,
dominant concept in research

Source: Irish wind and load data



Inter-annual variations of wind and solar h"ﬁ
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Particularly wind shows decadal cycles and strong inter-annual variability.

= Need ultra-long-duration energy storage (ULDES), i.e. > 100 hours.
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Establised idea: store hydrogen in salt caverns, transport by pipeline Jm;;fl'ﬁ

Many countries plan to store hydrogen in solution-mined salt caverns and transport

hydrogen in pipelines (can reuse fossil gas infrastructure for both).




Problem: salt deposits for hydrogen caverns are highly localised I'E
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Topographic data by Natural Earth (naturalearthdata.com)

Source: Solution Mining Research Institute



https://energnet.eu/wp-content/uploads/2021/02/3-Hevin-Underground-Storage-H2-in-Salt.pdf

Zoom on salt deposits in Europe and US
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Hydrogen versus its derivatives '.E
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Storing hydrogen in underground salt caverns has several potential issues:

e Salt deposits may be lacking
e Or may require GW-scale power transmission or hydrogen pipeline to access salt locations
e Hydrogen can leak with global warming impacts

e Caverns and transport infrastructure can be subject to local pushback



Hydrogen versus its derivatives '.E
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Storing hydrogen in underground salt caverns has several potential issues:

e Salt deposits may be lacking
e Or may require GW-scale power transmission or hydrogen pipeline to access salt locations
e Hydrogen can leak with global warming impacts

e Caverns and transport infrastructure can be subject to local pushback

But looking to wider hydrogen derivatives we know we need

e Ammonia for fertiliser, perhaps shipping
e Carbonaceous fuels for aviation, shipping and chemical feedstocks

Why not use these for storage instead?



A Solution: Methanol Storage
with Carbon Cycling



Solution: store e-methanol, now only liquids stored above ground l'ﬁ
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Store energy as methanol; combust methanol in pure oxygen from electrolysis in Allam cycle
turbine; capture pure carbon dioxide; then cycle for methanol synthesis with green hydrogen.
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https://doi.org/10.1016/j.joule.2023.10.001

Large methanol tanks can be built cheaply anywhere

e Methanol tanks cost just
0.01-0.05 €/kWh

e Single 200,000 m® tank can
store 880 GWh

e Can be built anywhere, take
up little space

e CO, and O, stored
cryogenically

e Can be dimensioned to
provide resilience against
low wind years, volcanos and

infrastructure outages

Source: Wikipedia


https://en.wikipedia.org/wiki/Storage_tank

Al

components are demonstrated at scale I'E

Berlin

A 50 MWy, Allam cycle turbine already operating for years in Texas; 300 MWy, plants to be
commissioned by 2026. George Olah Renewable Methanol plant in Iceland commissioned in
2011 produces 4000 tons per year. Megaton methanol plants run in China on gasified coal.
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Source: NET Power, Carbon Recycling International



https://www.powermag.com/breakthrough-net-powers-allam-cycle-test-facility-delivers-first-power-to-ercot-grid/
https://www.carbonrecycling.is/project-goplant

Study design onse ] 'E

Optimise wind, solar, batteries plus one of following chemical carriers over 71 historical
weather years (1950-2020) for Germany, Spain and UK.

e H, pressure vessel - hydrogen storage in aboveground steel pressure vessels

e H, salt cavern - hydrogen storage in underground salt caverns (round-trip ~ 38%)

e MeOH Allam CCU - methanol storage, all storage in aboveground steel tanks or pressure
vessels, CO; captured from Allam cycle turbine (round-trip ~ 35%)

e MeOH CCGT DAC/bio - methanol storage, all storage in aboveground steel tanks or
pressure vessels, CCGT without CO; capture instead of Allam, all CO, for methanol
synthesis from direct air capture (or biogenic sources)

11



Average electricity costs: UK, Germany, Spain "E
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Methanol system much cheaper than H, pressure vessels where caverns not available; still
16-20% more expensive than salt caverns, but if Allam cycle costs reduce, only 6-7% more.
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https://doi.org/10.1016/j.joule.2023.10.001

Average electricity costs: Ireland, France, Sweden reansoe [ E
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Similar results in Ireland, France and Sweden.
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https://doi.org/10.1016/j.joule.2023.10.001

Filling levels of storage in days of electricity demand I.E
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Methanol stored over many years for multi-year reductions in wind output. Storage large
enough to cover 92 days of electricity demand.
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https://doi.org/10.1016/j.joule.2023.10.001

Less than 10% of electricity provided by stored e-fuel
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13% of available wind and solar is curtailed, a further 13% lost in storage conversion.
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https://doi.org/10.1016/j.joule.2023.10.001

Scaleability down to 200 MW ﬂﬁ
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Economies of scale remain down to 200 MW (electrolyser power). = Interesting for smaller
autarkic regions, such as islands or data centres. Also good for fast, modular iteration.
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https://doi.org/10.1016/j.enconman.2018.12.015

Pros and cons versus other chemical storage '.E
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e Methane: similar costs and efficiencies to methanol, can re-use existing infrastructure like
methanol. Disadvantage of requiring pressurisation for storage and transport, leakage as
greenhouse gas, needs GW economies of scale, could prolong fossil gas.

e Ammonia: has advantage of avoiding carbon cycle. But toxic, needs cryogenic storage,
storage and transport is highly regulated, ammonia turbines have low TRL, nitrogen oxide
emissions mean mitigation necessary.

e Liquid hydrogen: LH, requires constant cooling power, less attractive for ULDES.

e Liquid organic hydrogen carrier: LOHC similar to methanol storage, but more expensive
and lower TRL. Waste heat from power generation can be used for dehydrogenation.

17



Sensitivity to cost assumptions
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Effects of halving Allam cycle investment cost (from 1832 €/kW to 916 €/kW), doubling DAC
investment cost (raises CO, cost in Germany from 202 €/tCO; to 316 €/tCOx).
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https://doi.org/10.1016/j.joule.2023.10.001

Sensitivity to flexibility assumptions "E

Universitat
Berlin

Fossil methanol synthesis typically runs with high capacity factors. Here we explore varying the
minimum part load level (from 0% to 50%) and the hourly ramping limit (from 10% to 5%).
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Partload with different flexibility assumptions remice '.E
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Avoiding cycling carbon dioxide and direct air capture l'ﬁ
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In short-term can take CO, from e.g. biogas, or convert all biogas to e-bio-methanol. But
mid-term this CO5 is needed by shipping and industry = better to cycle if possible.
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Figure 4: The process flow of bio-methanol production  Figure 5: Energy balance
Source: Lemvig Biogas Source: Lemvig Biogas

Source: IEA Bioenergy
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https://www.ieabioenergy.com/blog/publications/new-publication-case-story-green-methanol-from-biogas-in-denmark/

Plug for Open Modelling




What is open modelling? Urxmf'.ﬁ
Open energy modelling means modelling with open software, open data and open publishing.

Open means that anybody is free to download the software/data/publications, inspect it,
machine process it, share it with others, modify it, and redistribute the changes.

This is typically done by uploading the model to an online platform with an open licence

telling users what their reuse rights are.

The whole pipeline should be open:
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Python for Power System Analysis (PyPSA) hmﬁ
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e Open source tool for modelling energy
systems at high resolution.

e Fills missing gap between power flow
software (e.g. PowerFactory,
MATPOWER) and energy system
simulation software (e.g. PLEXOS,
TIMES, 0SeMOSYS).

= Goothermal

== Offshore Wind (DC)
mm= Offshore Wind (AC)
= Nuclear

== Open-Cycle Gas.
- Ol

= Onshore Wind

o
E = Reservoir & Dam

=\~ == Pumped Hydro Storage
7 e Run of River

e Good grid modelling is increasingly

important, for integration of

renewables and electrification of
transport, heating and industry. PyPSA is available on GitHub. It is used worldwide by

researchers, consultants, TSOs and NGOs.
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https://github.com/PyPSA/PyPSA
https://pypsa.readthedocs.io/en/latest/users.html

Integrated capacity expansion for electricity (left) and hydrogen (right)mcml'ﬁ
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Source: Neumann et al, 2023

Hydrogen Storage [TWh]


https://arxiv.org/abs/2207.05816

How do we capture, utilise, transport and sequester carbon? J:;:':;;gf"ﬁ

carbon capture
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e Hydrogen economy is also linked to
carbon dioxide management

e Need CCS for process emissions,
CCU for synfuels and basic
chemicals, CDR for unabatable and
negative emissions

e For synthetic hydrocarbons, do we
transport hydrogen to carbon
sources, or carbon to hydrogen
sources?

e Can we avoid hydrogen grid
altogether and transport only CO,,
CH4 and MeOH?

Source: F. Neumann, C. Tries, F. Hofmann, 2023
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Conclusions




Conclusions onse ] 'E
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e Systems built on wind and solar will need long-duration storage both for variability and
resilience against rare extreme events

e Where salt deposits are not available, methanol storage provides an attractive
alternative, whereby carbon is captured and cycled back to synthesis

e System costs are much lower than using hydrogen pressure vessels; costs are 6-20%
higher than with hydrogen caverns, depending on cost assumptions

e By providing storage for many days, a methanol-based system is resilient against low-wind
years, volcano eruptions and infrastructure interruptions

e Further research needed on synthesis flexibility, Allam cycle and system integration
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Sensitivity to seasonal demand "ﬁ
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Suppose a third of demand comes from space heat pumps with seasonal demand.

2.0 1

=
8
)

electricity demand
=
=)
|

o
5
!

0.0 T T T T T
2010 2011 2012 2013 2014 2015

27

Source: Example of Germany



Sensitivity to seasonal demand

Costs rise in all scenarios with 33% seasonal demand coming from heat pumps.

average system electricity cost [€/MWh]
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Sensitivity to CCS -. E
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Having both methanol and salt caverns; allowing CCS in Allam with fossil gas at 30 and
50 €/MWhyy,.
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