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Introduction



Goal

Given a desired CO2 reduction, what is the most cost-effective system?

Min

(
Yearly system

costs

)
=
∑
n

(
Annualised

capital costs

)
+
∑
n,t

(Marginal costs)

subject to

• meeting energy demand at each node n and time t

• wind, solar, hydro (VRE) availability ∀n, t

• electricity/gas transmission constraints between nodes

• (installed capacity) ≤ (geographical potential)

• CO2 constraint / RE share covering demand
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Interesting Questions

How do system characteristics and costs change as we . . .

• . . . restrict transmission expansion?

• . . . impose import/export balance constraints?

• . . . relax CO2 constraint?

• . . . include non-pumped-hydro storage?

• . . . include meshed overlay direct current network and/or more

phase-shifting transformers?

• . . . couple electricity sector to heating/cooling and transport?

Some of these questions are driven by politics/social factors:

compromises that take us away from economic optimum.
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Problem 1: Spatial resolution

Need high spatial resolution to represent VRE resource variation and

transmission constraints in electricity and gas networks.
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Problem 2: Temporal resolution

Need high temporal resolution to represent load and VRE resource

variability and correlations. Wind generation in Europe in July 2013:
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Problem 3: Model accuracy

Modelling must respect physics.

• How much detail in the input data do we need?

• Optimise transmission simultaneously with generation capacity?

• How bad are linear approximations?

• Can we make the algorithms faster, to add detail in other areas?

• By looking at static situations, do we miss dynamic effects?
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Examples from literature of electricity optimisation

Study Spatial Temporal What? Flow

resolution resolution physics

Czisch (2005) low high g and t transport

Hagspiel et al. (2014) medium low g and t linear

Egerer et al. (2014) high low t only linear

Czisch Hagspiel et al. Egerer et al.
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Overarching goal

Find the “sweet spot” where:

• Computation time is finite (i.e. a week)

• Temporal resolution is “good enough”

• Spatial resolution is “good enough”

• Model detail is “good enough”

AND quantify the error we make by only being “good enough”

(e.g. are important metrics ±10% or ±50% correct?)

10



Example: Electricity system optimisa-

tion



Objective function

Objective function is total annual system cost, whose minimisation

represents maximisation of “social welfare” (for fixed inelastic demand):

f (P̄l , ḡn,s , gn,s,t) =
∑
l

(cl + ol)P̄l +
∑
n,s

cn,s ḡn,s +
∑
n,s,t

wton,sgn,s,t

We optimise:

• the transmission capacity of all the lines l (P̄l)

• the generation capacities of all technologies (wind/solar/gas etc.) s

at each node n

• the dispatch of each generator at each point in time t

Representative time points are weighted wt such that
∑

t wt = 365 ∗ 24

and the capital costs c∗ are annualised, so that the objective function

represents the annual system cost.
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Main constraints

• Demand dn,t is always met by generation or transmission

dn,t =
∑
s

gn,s,t +
∑
l∈n

fl,t

• Dispatch gn,s,t cannot exceed availability ḡn,s,t

0 ≤ gn,s,t ≤ ḡn,s,t ≤ ḡn,s

• Rated capacity cannot exceed the installable potential ĝn,s

ḡn,s ≤ ĝn,s

• Transmission flows cannot exceed capacities

|fl,t | ≤ P̄l

• CO2 constraint is respected∑
n,s,t

1

ηn,s
gn,s,ten,s ≤ CAP
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Nota bene

• Renewables can be arbitrarily curtailed if that’s cost-effective

• No assumptions made about which technology is preferred

• No assumptions made about spatial distribution of generation

• No assumptions made about transmission capacity

• Transmission capacity is optimized jointly with generation, e.g. sites

far from loads requiring lots of transmission are balanced against

sites nearer loads; also balancing made in time, e.g. transmission

line not necessarily built out for extreme events
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Example application: 30-node model of Europe

‘Toy’ model: 30 European countries optimised over all 8760 hours of a

sample year, only wind, solar and gas generation (hydro is fiddly)

wind potential (= 100 GW)

wind capacity (= 100 GW)

transmission network (= 50 GW)

• Minimise electricity

system costs (generation

& transmission) assuming

CO2 reduction of 90%

• Energy consumed: 86%

wind, 10% gas, 4% solar

• 16% curtailment of

available wind energy

• Total system cost of

e 131 billion / year ∼
e 41 /MWh
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Cost and other assumptions

Quantity Cost Unit

Wind onshore capital 1000 e/kW

Solar capital 1000 e/kW

Gas capital 700 e/kW

Gas marginal 50 e/MWh

Transmission line 400 e/MW/km

Gas CO2 emissions 0.2 t/MWhthermal

EEA electricity CO2 emissions 2015 1.5 Gt/a

Gas plant efficiency 40 %

Interest rate 5 %

Line lifetime 40 years

Generators lifetime 20 years

16



Projects at FIAS over next 18 months

• Look at coupling electricity with heating and transport, probably at

country-scale aggregation (most studies on sector coupling have

either no spatial resolution or no temporal resolution, missing

Europe-wide smoothing benefits)

• Look at electricity sector optimisation with high spatial resolution to

see how far it deviates from country-aggregated solutions
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Network reduction



Reducing spatial resolution

We need spatial resolution to:

• capture the geographical variation of renewables resources

(Niedersachsen versus Bayern) and the load

• capture spatio-temporal effects (e.g. size of wind correlations across

the continent)

• represent important transmission constraints

BUT we do not want to have to model all 10,000 network nodes of the

European system.

We want to aggregate nodes where load/RE resources are highly

correlated and where there are no network bottlenecks inside the clusters

(very similar to the concept of the electricity market bidding zone).
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Many algorithms in the literature

There are lots of algorithms, particularly in the engineering literature:

• k-means clustering on (electrical) distance

• k-means on load distribution

• Community clustering (e.g. Louvain)

• Spectral analysis of Laplacian matrix

• Clustering of Locational Marginal Prices with nodal pricing (sees

congestion and RE generation)

• PTDF clustering

• Cluster nodes with correlated RE time series

The algorithms all serve different purposes (e.g. reducing part of the

network on the boundary, to focus on another part).

Not always tested on real network data.
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Our metrics of interest

What we want from a network aggregation algorithm:

1. Preservation of major flows within original network

2. Preservation of overall volume of flows

3. For capacity optimisation: representative capacity extensions with

aggregated network

4. Preservation of spatial distribution of generation capacity
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Best method so far: load custering

Cluster nodes based on load using k-means.

I.e. find k centroids and the corresponding k-partition of the original

nodes that minimises the sum of squared distances from each centroid to

its nodal members:

min
{xc}

k∑
c=1

∑
n∈Nc

wn||xc − xn||2 (1)

where each node is weighted wn by the average load there.

NB: Totally ignores grid topology. It works because network is principally

laid out to serve the load (with exception of large conventional power

plants situated near e.g. mines/rivers).
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k-means clustering

k-means: 491 -> 491 k-means: 491 -> 200 k-means: 491 -> 100

k-means: 491 -> 50
k-means: 491 -> 25 k-means: 491 -> 10
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Source: SciGRID (2015), OpenStreetMap



Compare flows

Compare the aggregated ‘microscopic’ flows in the original network to

the ‘macroscopic’ flows in the aggregated network.

We have two networks, our original one 1 and our aggregated one 2.

We have some N2 ×N1 matrix map B from the buses in 1 to 2 with ones

wherever a bus in 1 is aggregated to a bus in 2.

Similarly we have an L2 × L1 matrix map L from the lines in 1 to the lines

in 2.

Aggregated microscopic flows:

L · PTDF1 · P (2)

where P is an N1 vector of power imbalances at the buses of 1 and

PTDF is the linear Power Transfer Distribution Factor.

Macroscopic flows in aggregated network:

PTDF2 · B · P (3)
24



k-means clustering correlation
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k-means clustering Pearson
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k-means clustering total loading
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Time series reduction



Basic idea

It is often desirable to take historical data, for example electrical load,

wind and solar generation for many locations sampled hourly over several

years, and then reduce the snapshots to a representative sample.

This is often done fairly manually, e.g. summer/winter + high/low

wind/load days.

Can we do this more systematically and algorithmically?

The sample should be representative in the following senses:

1. It should reproduce statistics of the full historical data, such as the

mean, (co-)variance and higher moments of the time series (so that,

for example, capacity factors and spatial correlations for wind and

solar are preserved).

2. It should preserve extreme events, such as high electrical demand

and low VRE feed-in, which determine backup generation capacities.
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More mathsy version

Suppose we have a set I of time series over times T , so that the value of

each time series i ∈ I at time t ∈ T is given by xi (t). We treat this like

an |I |-dimensional random vector X = {Xi} over the event space of time

(with uniform probability measure).

The goal is to find a smaller sample |S | ≤ |T | and a weighting

w : S → [0, 1] such that common statistics are preserved

E [f (X)] ∼
∑
t∈T

1

|T |
f (x(t)) ∼

∑
s∈S

w(s)f (x(s))

(depending on the statistic, corrections can be made to get unbiased

estimators) and that extremes are also preserved

max
T

/min
T

xi (t) ∼ max
S
/min

S
xi (s)

Note that the choice of S and w depends on all the samples xi (t). The

weight imitates a probability measure and satisfies
∑

s∈S w(s) = 1.
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2d example: wind production in Germany and Denmark

• k-means clustering

creates k clusters

• Centroids chosen to

minimise the sum of

squared distances

between the centroids

and the original points

• w(s) ∝ number of

points assigned to

each cluster

• Envelope ∼ convex

hull not so well

captured
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Statistics over time for clustering of DE − DK wind
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• Mean and

(co-)variance

well-preserved as

number of clusters

decreases

• Below 10 clusters, the

extremes (min and

max) are not so well

captured
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European example

For a bigger European example, enlarge the dimensionality of the random

vector from 2 to 90 = (30 countries) × (wind, solar, load)
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• Means always

preserved, thanks to

algorithm

• With higher

dimensionality, more

clusters are required

to preserve other

statistics
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European example without logarithmic scale

Removing the logarithmic scale, it’s not so bad...

010002000300040005000600070008000

number of clusters (logarithmic scale)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p
e
r 

u
n
it

EU wind mean

EU load mean

EU wind min

EU load max

DK-DE wind cov

DK-DE wind coskew1

34



Example application: 30-node model of Europe

Demonstrate effects on optimisation with example we can solve for all

8760 hours of a sample year: the 30-node European model

wind potential (= 100 GW)

wind capacity (= 100 GW)

transmission network (= 50 GW)

• Minimise electricity

system costs (generation

& transmission) assuming

CO2 reduction of 90%

• Energy consumed: 86%

wind, 10% gas, 4% solar

• 16% curtailment of

available wind energy

• Total system cost of

e 131 billion / year ∼
e 41 /MWh
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Energy progression

The European electrical load of ∼ 3200 TWh/a is mostly met by wind.
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• Main feature is

preserved: domination

of wind

• For low number of

clusters, optimisation

doesn’t see hours with

high load and low

VRE, so removes

backup energy
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Cost progression
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• This story is repeated

in the cost summation

• Costs with just one

cluster are 34% lower

than with all

snapshots

• Balance between

generation and

transmission is well

preserved
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Installed capacity / peak load progression
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Installed capacity distribution
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• Distribution of

capacity around

Europe shows some

variation in countries

which are not at the

upper capacity

potential limit

(France, Germany for

wind and both Italy

and Greece for solar)
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Computation time progression

The pay-off is big in terms of computational time:
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• Reducing number of

snapshots by factor 8

reduces computation

time from 9.4 hours

to 11 minutes.

• This gain comes with

little loss of modelling

accuracy.
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Forcing extreme events

By analysing tail of high residual load (load - VRE), can force in extreme

events with appropriate weighting/measure (i.e. include once-in-ten-years

event) to capture backup capacity correctly.
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Distribution of extreme events: 5 year sample QQ

• Both load and

residual exhibit

shorter tails than the

normal distribution

• This is GOOD - it

means extreme events

are less likely than

normal
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Fitting the tails

• Can fit them to

Tukey-Lambda with

value λ = 0.239

(normal distribution is

λ = 0.14; fatter tails

are λ < 0.14, like

logistic or

t-distribution; λ = 1 is

the uniform

distribution)
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Results: extreme event maintain total cost better

Inserting the once-in-five-years extreme event of high residual load into

the data with the correct weight means the total cost is better kept as

you reduce the number of nodes
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Line cost experiment 1/2

Can do simple sensitivity analysis very quickly, e.g. on changing line cost.

See effect of restricting transmission: Far left is Europe as copper-plate

(as much transmission as necessary), far right is no transmission.
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• Model results very

sensitive to change in

line costs

• If line costs increase

by factor 10 (∼ using

underground cables

instead of overhead

lines), only 32% of

lines get built and

system costs increase

by over 40%
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Line cost experiment 2/2
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• Curtailment of wind

jumps from 14% to

59% as transmission

restricted

• Increasing shares of

solar as transmission

is restricted, with even

higher curtailment

than for wind (68%

curtailment)
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CO2 restriction experiment 1/3

See effect of reducing backup energy, which in this model is ∝ CO2

(although in reality we have carbon-free hydroelectricity)
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• From 20% and higher,

CO2 restriction is no

longer binding =⇒
low-CO2 is cheaper!

• Cost-optimal backup

around 15-20% by

energy, which is

exactly level of

hydroelectricity

• Lower than 1%,

curtailment

sky-rockets
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CO2 restriction experiment 2/3
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CO2 restriction experiment 3/3
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Improving optimisation formulation



Attacking model formulation

Reformulate and benchmark linear optimal power flow formulation:

• Power Transfer Distribution Factor

(PTDF) (dense but no auxilliary variables)

F` =
∑
i

PTDF`iPi

• Voltage angles (sparse but N auxilliary

variables)

F` =
∑
k,i

B`kK
T
ki θi

• Kirchoff’s voltage law around closed cycles (cf. Ronellenfitsch,

Timme, Witthaut (2015) - semi-sparse and only L− N + 1 auxilliary

variables)

F` = T` +
∑
c

C`cLc
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Conclusions



Conclusions

• There is lots of room for improvement in overall system optimisation.

• Data reduction in time and space can improve optimisation speed,

allowing more interesting modelling complexity.

• Moreoever data reduction is essential as the modelling becomes

more detailed (integrating other sectors like transport and heating)

• Learning where data reduction does not affect the results tells us

important information about the system sensitivities.

• Extreme events must be balanced carefully against “typical” system

behaviour, depending on their effect on the results.

• New algorithms can also speed up the optimisation.
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Open Modelling Adverts

Small advert 1: We’d like our modelling and results to be as transparent

and repeatable as possible. Therefore we aim to make all our code and

data available. All the software for the optimisation is available here:

https://github.com/FRESNA/PyPSA

“Python for Power System Analysis” also does non-linear power flow for

those interested in voltage and reactive power.

Small advert 2: Open Energy Modelling Initiative

http://openmod-initiative.org/ - join the mailing list! Let’s put an

end to pointlessly-repeated data munging and increase transparency.

Workshop at KTH, Stockholm, 28-29 April, 2016.
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