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Energy System Challenges



The Global Carbon Dioxide Challenge: Budgets from 2016

600 Gt budget gives 33% chance of 1.5◦C (Paris: ‘pursue efforts to limit [warming] to 1.5◦C’)

800 Gt budget gives 66% chance of 2◦C (Paris: hold ‘the increase...to well below 2◦C’)

4Source: ‘Three years to safeguard our climate,’ Nature, 2017



It’s not just about electricity demand...

EU28 CO2 emissions in 2015 (total 3.2 Gt CO2, 8% of global):

public electricity and heat

33.3%
residential heating

11.8%
services heating 4.9%rail transport 0.2%

road transport

26.8%

navigation

4.7%

aviation

4.9% industry (non-electric)
13.0%

other0.4%

5Source: Brown, data from EEA

https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-13


...but electification of other sectors is critical for decarbonisation

Wind and solar dominate the expandable potentials for low-carbon energy provision, so

electrification is essential to decarbonise sectors such as transport and heating.

Fortunately, these sectors can also offer crucial flexibility back to the electricity system.

6Source: Tesla; heat pump: Kristoferb at English Wikipedia

https://commons.wikimedia.org/w/index.php?curid=10795550


Energy System Design: Research Questions

• What infrastructure does a highly renewable energy

system require?

• Where should it go? And when?

• Given a desired CO2 reduction, how much will it cost?

• How to deal with the variability of wind and solar?

The answers to these questions affect hundreds of billions

of euros of spending per year.

Researchers deal with these questions by solving large

optimisation problems.
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Take account of social and political constraints

The Energy Transition is not just a case of “cost

optimisation under CO2 constraints”. There are

also social and political constraints.

We need to assess:

• Reducing need for transmission using storage

/ sector coupling (e.g. battery electric

vehicles, thermal storage)

• New technologies that can minimise the

landscape impact of transmission

• Efficiency and sufficiency to reduce demand

Transparency is critical for public acceptance.
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Variability of Wind, Solar & Demand



Daily variations: challenges and solutions
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Daily variations in supply

and demand can be

balanced by

• short-term storage

(e.g. batteries,

pumped-hydro, small

thermal storage)

• demand-side

management (e.g.

battery electric

vehicles, industry)

• east-west grids over

multiple time zones
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Synoptic variations: challenges and solutions
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Synoptic variations in

supply and demand can be

balanced by

• medium-term

storage (e.g.

chemically with

hydrogen or methane

storage, thermal

energy storage, hydro

reservoirs)

• continent-wide grids

Transmission lines

Country nodes
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https://www.youtube.com/watch?v=ttfuEnMz2UM


Seasonal variations: challenges and solutions
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Seasonal variations in

supply and demand can be

balanced by

• long-term storage

(e.g. chemically with

hydrogen or methane

storage, long-term

thermal energy

storage, hydro

reservoirs)

• north-south grids

over multiple

latitudes
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Warm-Up Electricity Only



Linear optimisation of annual system costs

Find the long-term cost-optimal energy system, including investments and short-term costs:

Minimise

(
Yearly system

costs

)
=
∑
n

(
Annualised

capital costs

)
+
∑
n,t

(Marginal costs)

subject to

• meeting energy demand at each node n (e.g. region) and time t (e.g. hour of year)

• wind, solar, hydro (variable renewables) availability ∀ n, t

• transmission constraints between nodes

• (installed capacity) ≤ (geographical potential for renewables)

• CO2 constraint (95% reduction compared to 1990)

Generation, storage and transmission optimised jointly because they are strongly interacting.

14



Warm-up: Determine optimal electricity system

• Meet all electricity demand.

• Reduce CO2 by 95% compared to 1990.

• Generation (where potentials allow):

onshore and offshore wind, solar,

hydroelectricity, backup from natural gas.

• Storage: batteries for short term,

electrolyse hydrogen gas for long term.

• Grid expansion: simulate everything from

no grid expansion (like a decentralised

solution) to optimal grid expansion (with

significant cross-border trade).

220 kV
300 kV
380 kV

15Source: PyPSA-Eur, based on ENTSO-E map



Global constraint on transmission volume

New transmission is capped, given length dl and capacity P̄` of each line:∑
`

d`P̄` ≤ CAPtrans ↔ µtrans

We successively change the transmission limit, to assess the costs of balancing power in time

(i.e. storage) versus space (i.e. transmission networks).

The shadow price µtrans [EUR/(aMWkm)] gives us the marginal value of new transmission

capacity.

16



PyPSA-Eur: Open Model of European Transmission System

220 kV
300 kV
380 kV

• Grid data based on GridKit extraction of

ENTSO-E interactive map

• powerplantmatching tool combines open

databases using matching algorithm DUKE

• Renewable energy time series from open

atlite, based on Aarhus University REatlas

• Geographic potentials for RE from land use

• Basic validation described in Hörsch et al

‘PyPSA-Eur: An Open Optimisation Model of

the European Transmission System’

• https://github.com/FRESNA/pypsa-eur

17

https://github.com/larsga/Duke
https://arxiv.org/abs/1806.01613
https://arxiv.org/abs/1806.01613
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Costs and assumptions for the electricity sector (projections for 2030)

Quantity Overnight Cost [e] Unit FOM [%/a] Lifetime [a]

Wind onshore 1182 kWel 3 20

Wind offshore 2506 kWel 3 20

Solar PV 600 kWel 4 20

Gas 400 kWel 4 30

Battery storage 1275 kWel 3 20

Hydrogen storage 2070 kWel 1.7 20

Transmission line 400 MWkm 2 40

Interest rate of 7%, storage efficiency losses, only gas has CO2 emissions, gas marginal costs.

Batteries can store for 6 hours at maximal rating (efficiency 0.9× 0.9), hydrogen storage for

168 hours (efficiency 0.75× 0.58).

18



Reduce spatial resolution with clustering

We need spatial resolution to:

• capture the geographical variation of

renewables resources and the load

• capture spatio-temporal effects (e.g.

size of wind correlations across the

continent)

• represent important transmission

constraints

BUT we do not want to have to model all

5,000 network nodes of the European system.

19



Solution: k-means clustering

Full Network

Substation
AC-Line
DC-Line

Network with 362 clusters Network with 181 clusters

Network with 128 clusters Network with 64 clusters Network with 37 clusters

20



Electricity system with no grid expansion

offshore wind
onshore wind

solar
hydro

battery storage
hydrogen storage

gas

• Assume nodal pricing

• Wind built in North where grid

capacity allows, solar in South

• With no grid expansion, lots of

storage required to balance

variability, costs are high

• Batteries pair with solar in South

• Hydrogen storages pairs with

longer-term variations of wind in

North

21Source: Hörsch et al, 2017

https://doi.org/10.1109/EEM.2017.7982024


Dispatch with no grid expansion

For Great Britain with limited interconnecting transmission, excess wind is either stored as

hydrogen or curtailed:
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When grid expansion allowed: avoid costly storage

offshore wind onshore wind solar gas hydro hydrogen storage battery storage

23



Dispatch with cost-optimal interconnecting transmission

Almost all excess wind can be now be exported:
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Cost behaviour as transmission expansion is allowed
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solar
gas
gas (marginal)

PHS
hydro

hydrogen storage
battery storage

• Big non-linear cost reduction as

grid is expanded

• Most of cost reduction happens

with 25% grid expansion

compared to today’s grid (25%

corresponds to TYNDP)

• Costs comparable to today’s system

(around e200 billion/a)

• Investment in solar and batteries

decrease significantly as grid

expanded; with cost-optimal grid,

system is dominated by wind

25Source: Schlachtberger et al, 2017, Hörsch et al, 2017

https://doi.org/10.1016/j.energy.2017.06.004
https://doi.org/10.1109/EEM.2017.7982024


Locational Marginal Prices CAP=1 versus CAP=3

With today’s capacities:
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With three times today’s grid:
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Grid expansion cap shadow price as cap is relaxed
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Overhead lines

Underground cables

• With overhead lines

the optimal system

has around 3 times

today’s transmission

volume

• With underground

cables (5-8 times

more expensive) the

optimal system has

around 1.3 to 1.6

times today’s

transmission volume
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Different flexibility options have difference temporal scales

Jan
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• Hydro

reservoirs are

seasonal

• Hydrogen

storage is

synoptic
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Different flexibility options have difference temporal scales

Aug
2011
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• Pumped hydro

and battery

storage are

daily
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Electricity, Heat and Transport



Include other sectors: heating and land transport

Electricity, (low-temperature) heating and land transport cover 77% of 2015 CO2 emissions:

public electricity and heat

33.3%
residential heating

11.8%
services heating 4.9%rail transport 0.2%

road transport

26.8%

navigation

4.7%

aviation

4.9% industry (non-electric)
13.0%

other0.4%

31Source: Brown, data from EEA

https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-13


Efficiency of renewables and sector coupling

exceed 50 %.

Fuel

Fossil-fuel condensing power station

Losses

Electricity

Renewable
electricity

To
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w
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Electricity Heat Transport

Wind/solar energy

Electricity Renewable
electricity

Electric mobility

Renewable
electricity

Ambient heat

Heat pumps

Losses

Heat

Fuel

Gas heating

Losses

Heat Fuel

Internal-combustion engine

Losses

Propulsion

Propulsion

Losses

32Source: BMWi White Paper 2015

https://www.bmwi.de/Redaktion/EN/Publikationen/whitepaper-electricity-market.html


Challenge: Heating and transport demand highly peaked

Compared to electricity, heating and

transport are strongly peaked.

• Heating is strongly seasonal, but

also with synoptic variations.

• Transport has strong daily

periodicity.
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Sector Coupling

Idea: Couple the electricity sector to heating and mobility.

This enables decarbonisation of these sectors and offers more flexibility to the power system.

Battery electric vehicles can change

their charging pattern to benefit the

system and even feed back into the grid

if necessary

Heat and synthetic fuels are easier and

cheaper to store than electricity, even

over many months

34



Sector coupling: A new source of flexibility

Couple the electricity sector (electric demand, generators, electricity storage, grid) to electrified

transport and low-T heating demand (model covers 75% of final energy consumption in 2014).

Also allow production of synthetic hydrogen and methane.
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[NB: Computational restrictions mean restricting to one-node-per-country for Europe.] 35



Transport sector: Electrification of Transport
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Weekly profile for the transport demand based

on statistics gathered by the German Federal

Highway Research Institute (BASt).

• All road and rail transport in each country

is electrified, where it is not already

electrified

• Because of higher efficiency of electric

motors, final energy consumption 3.5

times lower than today at 1102 TWhel/a

for the 30 countries

• In model can replace Electric Vehicles

(EVs) with Fuel Cell Vehicles (FCVs)

consuming hydrogen. Advantage:

hydrogen cheap to store. Disadvantage:

efficiency of fuel cell only 60%, compared

to 90% for battery discharging.
36



Transport sector: Battery Electric Vehicles
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Availability (i.e. fraction of vehicles plugged in)

of Battery Electric Vehicles (BEV).

• Passenger cars to Battery Electric Vehicles

(BEVs), 50 kWh battery available and

11 kW charging power

• Can participate in DSM and V2G,

depending on scenario (state of charge

returns to at least 75% every morning)

• All BEVs have time-dependent availability,

averaging 80%, max 95% (at night)

• No changes in consumer behaviour

assumed (e.g. car-sharing/pooling)

• BEVs are treated as exogenous (capital

costs NOT included in calculation)
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Coupling Transport to Electricity

Electricity Electricity+Transport
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hydroelectricity

• If all road and rail transport

is electrified, electrical

demand increases 37%

• Costs increase 41% because

charging profiles are very

peaked (NB: distribution grid

costs NOT included)

• Stronger preference for PV

and storage in system mix

because of daytime peak

• Can now use flexible charging
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Using Battery Electric Vehicle Flexibility
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• Shifting the charging time can

reduce system costs by up to 14%.

• If only 25% of vehicles participate:

already a 10% benefit.

• Allowing battery EVs to feed back

into the grid (V2G) reduces costs

by a further 10%.

• This removes case for stationary

batteries and allows more solar.

• If fuel cells replace electric vehicles,

hydrogen electrolysis increases costs

because of conversion losses.
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Heating sector: Many Options with Thermal Energy Storage (TES)
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Heat demand profile from 2011 in all 30

countries using population-weighted average

daily T in each country, degree-day approx.

and scaled to Eurostat total heating demand.

• All space and water heating in the

residential and services sectors is

considered, with no additional efficiency

measures (conservative) - total heating

demand is 3585 TWhth/a.

• Heating demand can be met by heat

pumps, resistive heaters, gas boilers, solar

thermal, Combined-Heat-and-Power

(CHP) units. No industrial waste heat.

• Thermal Energy Storage (TES) is available

to the system as hot water tanks.
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Centralised District Heating versus Decentralised Heating

We model both fully decentralised heating and cases where up to 45% of heat demand is met

with district heating in northern countries.

Decentral individual heating

can be supplied by:

• Air- or Ground-sourced heat

pumps

• Resistive heaters

• Gas boilers

• Small solar thermal

• Water tanks with short time

constant τ = 3 days

Central heating can be supplied

via district heating networks by:

• Air-sourced heat pumps

• Resistive heaters

• Gas boilers

• Large solar thermal

• Water tanks with long time

constant τ = 180 days

• CHPs

CHP feasible dispatch:
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Cost and other assumptions

Quantity O’night cost [e] Unit FOM [%/a] Lifetime [a] Efficiency

GS Heat pump decentral 1400 kWth 3.5 20

AS Heat pump decentral 1050 kWth 3.5 20

AS Heat pump central 700 kWth 3.5 20

Resistive heater 100 kWth 2 20 0.9

Gas boiler decentral 175 kWth 2 20 0.9

Gas boiler central 63 kWth 1 22 0.9

CHP 650 kWel 3 25

Central water tanks 30 m3 1 40 τ = 180d

District heating 220 kWth 1 40

Methanation+DAC 1000 kWH2 3 25 0.6

Costs oriented towards Henning & Palzer (2014, Fraunhofer ISE) and Danish Energy Database
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Coupling Heating to Transport and Electricity: Electricity Demand

Electricity Elec+Trans Elec+Trans+Heat
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• To 4062 TWhel/a demand

from electricity and

transport, 3585 TWhth/a

heating demand is added

• Much of the heating demand

is met via electricity, but

with high efficiency from

heat pumps

• Electricity demand 80%

higher than current

electricity demand

• Efficiency savings can reduce

this . . .
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Coupling Heating to Transport and Electricity: Costs

Electricity Electricity+Transport Elec+Trans+Heat
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• Costs jump by 117% to

cover new energy supply and

heating infrastructure

• 95% CO2 reduction means

most heat is generated by

heat pumps using renewable

electricity

• Cold winter weeks with high

demand, low wind, low solar

and low heat pump COP

mean backup gas boilers

required
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Cold week in winter
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High-density heat supply in DE for scenario Heating
gas boiler resistive heater air heat pump

There are difficult periods in winter with:

• Low wind and solar generation

• High space heating demand

• Low air temperatures, which are bad for

air-sourced heat pump performance

Solution: backup gas boilers burning either

natural gas, or synthetic methane.
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Using heating flexibility

Elec+Trans+Heat
Methanation TES

Central
Central-TES

All-Flex

All-Flex-Central
0

200

400

600

800

1000

Sy
st

em
 C

os
t [

EU
R 

bi
llio

n 
pe

r y
ea

r]

scenarios with no transmission
hot water storage
battery storage
hydrogen storage
methanation
gas

gas boiler
CHP
resistive heater
air heat pump
ground heat pump

solar thermal
solar PV
offshore wind
onshore wind
hydroelectricity

Successively activating couplings and

flexibility reduces costs by 28%. These

options include:

• production of synthetic methane

• centralised district heating in

areas with dense heat demand

• long-term thermal energy storage

(TES) in district heating networks

• demand-side management and

vehicle-to-grid from battery electric

vehicles (BEV)
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Cold week in winter: inflexible (left); smart (right)
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High-density heat supply in DE for scenario Heating
gas boiler resistive heater air heat pump
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Sector Coupling with All Extra Flexibility (V2G and TES)

Benefit of cross-border transmission is weaker with full sector flexibility (right) than with

inflexible sector coupling (left); comes close to today’s costs of around e 377 billion per year
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Spatial distribution of primary energy for All-Flex-Central

Including optimal transmission sees a shift of energy production to wind in Northern Europe.
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Storage energy levels: different time scales
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• Methane storage is depleted in

winter, then replenished throughout

the summer with synthetic methane

• Hydrogen storage fluctuates every

2–3 weeks, dictated by wind

variations

• Long-Term Thermal Energy Storage

(LTES) has a dominant seasonal

pattern, with synoptic-scale

fluctuations are super-imposed

• Battery Electric Vehicles (BEV) and

battery storage vary daily
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Pathway down to zero emissions in electricity, heating and transport
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If we look at investments to eradicate

CO2 emissions in electricity, heating and

transport we see:

• Electricity and transport are

decarbonised first

• Transmission increasingly important

below 30%

• Heating comes next with expansion

of heat pumps below 20%

• Below 10%, power-to-gas solutions

replace natural gas
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Electricity price statistics: zero-price hours gone thanks to P2G
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Curtailment also much reduced
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Market values relative to average load-weighted price re-converge
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Gas production/consumption tightly coupled to price
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Outlook

• Develop improvements on algorithmic side to enable larger problems (clustering, improved

optimisation routines)

• Apply sector coupling to 200-node European model (instead of one-node-per-country) to

see real transmission bottlenecks with scope, scale and sectors

• Explore pathway from here to 2050 (is P2X cost-effective sooner for local transmission

bottlenecks? - these are not seen in the one-node-per-country sector model)

• Improve technology palette: bioenergy, waste heat, CCS, DAC, more synthetic electrofuels

• Complete sectoral coverage: aviation, shipping, process heat in industry

• Explore more grid optimisation options: HTC, DLR, PST, SPS with storage/DSM
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Open Energy Modelling



Idea of Open Energy Modelling

The whole chain from raw data to modelling results should be open:

Open data + free software ⇒ Transparency + Reproducibility

There’s an initiative for that! Sign up for the mailing list / come to the next workshop:

openmod-initiative.org
58Source: openmod initiative

http://openmod-initiative.org/


Python for Power System Analysis (PyPSA)

Our free software PyPSA is online at https://pypsa.org/ and on github. It can do:

• Static power flow

• Linear optimal power flow

(LOPF) (multiple periods, unit

commitment, storage, coupling to

other sectors)

• Security-constrained LOPF

• Total electricity system investment

optimisation

It has models for storage, meshed AC

grids, meshed DC grids, hydro plants,

variable renewables and sector coupling.
59
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Conclusions



Conclusions

• Meeting Paris targets is much more urgent than widely recognised

• There are lots of cost-effective solutions thanks to falling price of renewables

• Electrification of other energy sectors like heating and transport is important, since

wind and solar will dominate low-carbon primary energy provision

• Grid helps to make CO2 reduction easier = cheaper

• Cross-sectoral approaches are important to reduce CO2 emissions and for flexibility

• Policy prerequisites: high, increasing and transparent price for CO2 pollution; to

manage grid congestion better: smaller bidding zones

• The energy system is complex and contains some uncertainty (e.g. cost developments,

scaleability of power-to-gas, consumer behaviour), so openness is critical
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