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Single Location Versus Country

Versus Continent



Variability: Single wind site in Berlin

Looking at the wind output of a single wind plant over two weeks, it is highly variable,

frequently dropping close to zero and fluctuating strongly.

Dec 01 Dec 03 Dec 05 Dec 07 Dec 09 Dec 11 Dec 13
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

fi
le

 n
o
rm

a
lis

e
d
 b

y
 m

a
x
 (

p
e
r 

u
n
it

)

Berlin wind

2



Variability: Single country: Germany

For a whole country like Germany this results in valleys and peaks that are somewhat

smoother, but the profile still frequently drops close to zero.
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Variability: A continent: Europe

If we can integrate the feed-in of wind turbines across the European continent, the feed-in is

considerably smoother: we’ve eliminated most valleys and peaks.
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Duration curve: Berlin

A duration curve shows the feed-in for the whole year, re-ordered by from highest to lowest

value. For a single location there are many hours with no feed-in.
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Duration curve: Germany

For a whole country there are fewer peaks and fewer hours with no feed-in.
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Duration curve: Europe

For the whole of Europe there are no times with zero feed-in.
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Statistical comparison

Area Mean Standard deviation

Berlin 0.21 0.26

Germany 0.26 0.24

Europe (including offshore) 0.36 0.19

Conclusion: Wind generation has much lower variability if you integrate it over a

continent-sized area.
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Fourier spectrum: weekly variations suppressed

The synoptic (2-3 weeks) variations in the Fourier spectrum are also suppressed between

Germany (left) and the Europe profile (right), however the seasonal variations remain.
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Why does this work? Consider the correlation length of wind

• The Pearson correlation coefficient of wind

time series with a point in northern Germany

decays with distance.

• Determine the correlation length L by fitting

the function:

ρ ∼ e−
x
L

to the radial decay with distance x .

• Typically correlation lengths for wind are

around 400− 600 km. Smoothing requires

aggregating uncorrelated sources, so need a

bigger area, i.e. a continent (Europe is about

3500 km tall and 3100 km wide).

10
Source: Hagspiel et al, 2012

https://doi.org/10.1016/j.apenergy.2011.10.039


Mismatch between load and renewables

How does the mismatch change as we integrate over larger areas?

If we have for each time t a demand of dt and a ‘per unit’ availability wt for wind and st for

solar, then if we have W MW of wind and S MW of solar, the effective residual load or

mismatch is

mt = dt −Wwt − Sst

We choose W and S such that on average we cover all the load

〈mt〉 = 0

and so that the 70% of the energy comes from wind and 30% from solar (W = 147 GW and

S = 135 GW for Germany).

This means

W 〈wt〉 = 0.7〈dt〉 S〈st〉 = 0.3〈dt〉
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Mismatch between load and renewables

Let pt be the balance of power at each time. Because we cannot create or destroy energy, we

need pt = 0 at all times.

If the mismatch is positive mt > 0, then we need backup power bt = mt to cover the load in

the absence of renewables, so that

pt = bt −mt = bt − dt + Wwt + Sst = 0

If the mismatch is negative mt < 0 then we need curtailment ct = −mt to reduce the excess

feed-in from renewables, so that

pt = −mt − ct = −ct − dt + Wwt + Sst = 0

At any one time we have either backup or curtailment

pt = bt −mt − ct = Wwt + Sst + bt − dt − ct = 0

12



Mismatch for Germany

Backup generation needed for 31% of the total load.

Peak mismatch is 91% of peak load (around 80 GW).
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Mismatch for Europe

Requires 750 GW each of onshore wind and solar.

Backup generation needed for only 24% of the total load.

Peak mismatch is 79% of peak load (around 500 GW).

0 20 40 60 80

Percentage of time during year

400

200

0

200

400

M
is

m
a
tc

h
 [

G
W

]

backup

curtailment

14



Conclusions

• Integration over a larger area smooths out the fluctuations of renewables, particularly wind.

• Wind backs up wind.

• This means we need less backup energy.

• And less backup capacity.
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Greiner papers

‘Cost-optimal design of a simplified, highly renewable pan-European electricity system’ by

Rolando A. Rodriguez, Sarah Becker, Martin Greiner, Energy 83 (2015) 658-668

16

http://www.sciencedirect.com/science/article/pii/S0360544215002212


Flexibility Requirements

‘Integration of wind and solar power in Europe: Assessment of flexibility requirements’ by

Huber, Dimkova, Hamacher, Energy 69 (2014) 236e246

1-hour net load ramp duration curves at the regional, country and European spatial scales at

50% share of renewables and 20% PV in the wind/PV mix for the meteorological year 2009.

17

http://www.sciencedirect.com/science/article/pii/S0360544214002680


Big Caveat

There is a big caveat to this analysis.

We’ve assumed that we can move power around Europe without penalty.

However, in reality, we can only transport within restrictions of the power network.

In general we will have different power imbalances pi,t at each location/node i and instead of

pt = 0 we will have ∑
i

pi,t = 0

(neglecting power losses in the network).

Moving excess power to locations of consumption is the role of the network.
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Electricity Networks



Electricity Transport from Generators to Consumers

Electricity can be transported over long distances with low losses using the high voltage

transmission grid (losses go like I 2R, power transmission like VI , so reduce I by raising V ):

Usually in houses the voltage is 230 V , but in the transmission grid it is transformed up to

hundreds of thousands of Volts. 19
Source: Wikipedia



European transmission network

Flows in the European transmission network must respect both Kirchoff’s laws for physical flow

and the thermal and/or other limits of the power lines.

Taking account of network flows and constraints in the electricity market is a major and

exciting topic at the moment.

20
Source: ENTSO-E



Network Bottlenecks and Loop Flows

Electricity is traded in large market zones. Power trades between zones (“scheduled flows”) do

not always correspond to what flows according to the network physics (“physical flows”). This

leads to political tension as wind from Northern Germany flows to Southern Germany via

Poland and the Czech Republic.

21
Source: THEMA Consulting Group



Solar resource distribution in Germany

• Solar insolution at top of

atmosphere is on average

1361 W/m2 (orbit is

elliptical).

• In Germany average

insolation on a horizonal

surface is around

1200 kWh/m2.

• A 1 kW solar panel

(around 7 m2) will

generate around

1000 kWh/a.
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Wind resource distribution in Germany

• Best wind speeds

in Germany in

North and on hills.

• In theory power

output goes like

cube ∝ v3 of wind

speed v .

• In practice

power-speed

relationship is only

partially cubic.

23



The Problem

Renewables are not always located near demand centres, as in this example from Germany.

24



The Problem

• This leads to overloaded lines in

the middle of Germany, which

cannot transport all the wind

energy from North Germany to the

load in South Germany

• It also overloads lines in

neighbouring countries due to loop

flows (unplanned physical flows

‘according to least resistance’ which

do not correspond to traded flows)

• It also blocks imports and

exports with neighbouring

countries, e.g. Denmark

25



Different types of networks: radial networks

In a radial or tree-like network there is only one path between any two nodes on the network.

The power flow is thus completely determined by the nodal power imbalances.

26
Source: Biggar & Hesamzadeh



Different types of networks: meshed networks

In a meshed network there are at least two nodes with multiple paths between them.

The power flow is now not completely determined. We need new information: the impedances

in the network.

27
Source: Biggar & Hesamzadeh



Graph Theory



Definition of a network

Our definition (Newman): A network (graph) is a collection of vertices (nodes) joined by

edges (links).

More precise definition (Bollobàs): An undirected graph G is an ordered pair of disjoint sets

(V ,E ) such that E (the edges) is a subset of the set V (2) of unordered pairs of V (the

vertices).

28



Edge list representation

• Vertices:

1,2,3,4,5,6

• Edges:

(1,2), (1,3), (1,6), (2,3), (3,4),

(4,5), (4,6)

Definition from graph theory:

• N = 6 vertices: order of the

graph

• L = 7 edges: size of the graph

29



Adjacency matrix A

Aij =

{
1 if there is an edge between vertices i and j

0 otherwise.

A =



0 1 1 0 0 1

1 0 1 0 0 0

1 1 0 1 0 0

0 0 1 0 1 1

0 0 0 1 0 0

1 0 0 1 0 0



• Diagonal elements are zero.

• Symmetric matrix for an undirected graph.

• If there are N vertices, it’s an N × N matrix.
30



Multigraph

There can be more than one edge between a pair of vertices.

A =



0 1 1 0 0 3

1 0 2 0 0 0

1 2 0 1 0 0

0 0 1 0 1 1

0 0 0 1 0 0

3 0 0 1 0 0
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Self-edges

There can be self-edges (also called self-loops).

A =



0 1 1 0 0 3

1 0 1 0 0 0

1 1 2 1 0 0

0 0 1 2 1 1

0 0 0 1 0 0

3 0 0 1 0 0



• Diagonal elements can be

non-zero:

Definition: Aii = 2 for one

self-edge.
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Weighted networks

We can assign a weight or strength assigned to each edge.

A =



0 1.4 0.4 0 0 0.8

1.4 0 1.2 0 0 0

0.4 1.2 0 0.2 0 0

0 0 0.2 0 0.2 0

0 0 0 0.2 0 0

0.8 0 0 0.4 0 0



Weights can be both positive or negative.

33



Components of networks

• Subgroups of vertices with no connections between

the respective groups

• Disconnected network

• Subgroups: components

• Adjacency matrix: Block-diagonal form

34



Directed Networks (Digraphs)

A graph is directed if each edge is pointing from one vertex to another (directed edge).

Aij =

{
1 if there is an edge from j to i

0 otherwise.

A =



0 0 0 0 0 0

1 0 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

1 0 0 1 0 0



In general the adjacency matrix of a directed network is asymmetric.
35



Degree

• The degree ki of a vertex i is defined as the number of edges connected to i .

• Average degree of the network: 〈k〉.

In terms of the adjacency matrix A:

ki =
n∑

j=1

Aij , 〈k〉 =
1

n

∑
i

ki =
1

n

n∑
i=1

n∑
j=1

Aij .

k5 = 1

k2 = k6 = 2

k1 = k3 = k4 = 3

〈k〉 = 2.33
36



Examples

(from the free textbook ”Network Science”)
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Degree matrix D

Dij =

{
ki if i = j

0 otherwise.

It’s an N × N matrix again:

D =



3 0 0 0 0 0

0 2 0 0 0 0

0 0 3 0 0 0

0 0 0 3 0 0

0 0 0 0 1 0

0 0 0 0 0 2
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Laplacian L

The Laplacian matrix is an N × N matrix defined for an undirected graph by

L = D− A

L =



3 −1 −1 0 0 −1

−1 2 −1 0 0 0

−1 −1 3 −1 0 0

0 0 −1 3 −1 −1

0 0 0 −1 1 0

−1 0 0 −1 0 2


• L inherits symmetry from D and A for the

undirected graph.

• The columns (and rows) sum to zero.

• For a set of connected nodes I ,
∑

i∈I Lij = 0 ∀j .
39



Eigenvalues and eigenvectors of Laplacian L

The number of eigenvectors with zero eigenvalues equals the number of connected components.

For our connected graph, the single zero eigenvector is (1, 1, . . . 1):

L



1

1

1

1

1

1


=



3 −1 −1 0 0 −1

−1 2 −1 0 0 0

−1 −1 3 −1 0 0

0 0 −1 3 −1 −1

0 0 0 −1 1 0

−1 0 0 −1 0 2





1

1

1

1

1

1


=



0

0

0

0

0

0


Multiplying this eigenvector sums the rows, which gives zero.

The image of the matrix is made of differences across the nodes, so is N − 1 dimensional.
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Eigenvalues and eigenvectors of Laplacian L

For a graph with two connected components, the Laplacian becomes block diagonal for the

components, since there are no edges linking the components in the adjacency matrix:

L =



2 −1 −1

−1 2 −1

−1 −1 2

2 −1 −1

−1 2 −1

−1 −1 2



1 2

3

4

5 6

Verify that the two zero eigenvectors are (1, 1, 1, 0, 0, 0) and (0, 0, 0, 1, 1, 1) corresponding to

the connected components.

41



The incidence matrix

For a directed graph (every edge has an orientation) G = (V ,E ) with N nodes and L edges,

the node-edge incidence matrix K ∈ RN×L has components

Ki` =


1 if edge ` starts at node i

−1 if edge ` ends at node i

0 otherwise

K =


1 0 0 0

−1 1 1 0

0 −1 0 1

0 0 −1 −1

 4 2

3

1

1

24

3

42



Incidence matrix properties

The incidence matrix has several important properties.

First, for a given edge `, the corresponding column sums to zero
∑

i Ki` = 0, since every edge

starts at some node (+1) and ends at some node (-1).

The row corresponding to each node i tells you which edges start there (+1) and which edges

end there (-1).

It is related to the Laplacian matrix by

L = KK t

Check the definitions agree:

Lij =
∑
`

Ki`Kj`

for i = j and i 6= j .

NB: K is defined for a directed graph, but L for the undirected version. The information on the

direction of the edges is lost in the formula L = KK t .
43



Incidence matrix properties

Let’s verify:

Lij =
∑
`

Ki`Kj`

For i = j we get

Lii =
∑
`

(Ki`)
2

The summands are only non-zero if the line ` is attached to i , so we get the degree

Lii = ki

Correct!

For i 6= j we have

Lij =
∑
`

Ki`Kj`

If there is no line between i and j , then both sides are zero.

If there is a line between i and j one of Ki` and Kj` is +1, while the other is −1, so we get

Lij = −1. Correct! 44



The kernel of the incidence matrix

The kernel of Ki`, i.e. particular combinations of edges which are annihilated by K , has a very

special meaning.

Consider the combination of edges (0, 1,−1, 1)t

K


0

1

−1

1

 =


1 0 0 0

−1 1 1 0

0 −1 0 1

0 0 −1 −1




0

1

−1

1

 =


0

0

0

0


This corresponds to a cycle in the graph. A cycle is a path through the network that returns to

its starting node. Each node in the cycle has an edge that ends there and an edge that starts

there, so is annihilated by K .

The matrix K can be interpreted as a boundary operator. A cycle has no boundary in 0-d.

There is a general theory called homology theory, which can compute topological invariants

of manifolds called homology groups.
45



A cycle

For our graph:

4 2

3

1

1

24

3

The combination of edges (0, 1,−1, 1)t

corresponds to the cycle:

4 2

3

NB: The direction of edge 3 is reversed by the

minus sign.

46



Cycle matrix

We can organise the cycles in a matrix C`c , where c labels each cycle.

We have

KC = 0

by definition of C being in the kernel.

The image of K has dimension N − 1 (i.e. the rank of K ) for a connected graph, since the

space spanned by the columns of K can only reach differences between nodes and never then

N-length vector (1, 1, . . . 1)t .

By the rank-nullity theorem for K we have

L = dim imK + dim kerK

so the number of cycles, i.e. the dimension of the kernel (nullity) of K is L− N + 1. If the

connected graph has no cycles, i.e. it is a tree, then L = N − 1.

In our case L = 4, N = 4 so there is only 1 cycle

C = (0, 1,−1, 1)t 47



Independent basis of cycles

f1

f2

f3

f4
f5

c1 c2

Two independent cycles:

c1 = f1 + f5 + f4

c2 = f2 + f3 +−f5

The outer cycle is not independent:

c3 = f1 + f2 + f3 + f4 = c1 + c2
48



Trees

• Trees play an import role for random

graph models.

• In a tree, there is exactly one path

between any pair of vertices.

• A tree of N vertices always has exactly

N − 1 edges.

• Any connected network with N vertices

and N − 1 edges is a tree.

• Trees have no cycles.

• A collection of trees is called a forest.

49



Planar networks

A planar network is a network that can be drawn on a plane without having any edges cross.

Examples:

• Trees

• Road networks (approximately)

• Power grids (approximately)

• Shared borders between countries, etc.
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Paths

• Route through the network, from vertex to vertex along the edges

• Defined for both directed and undirected networks

• Special case: self-avoiding paths

• Length of a path: number of edges along the path (”hops”)

• Number of paths of length r between vertices i and j :

N
(r)
ij = [Ar ]ij

• Total number Lr of loops of length r anywhere in the network:

Lr =
n∑

i=1

[Ar ]ii = TrAr .
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Geodesic / shortest paths

• A path between two vertices such that no shorter

path exists

• Geodesic distance between vertices i and j is the

smallest value of r such that [Ar ]ij > 0.

• Self-avoiding

• In general not unique

• Diameter of a network: Length of the longest

geodesic path between any pair of vertices
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Acyclic directed network

• Directed network without cycles of edges (DAG)

• Examples: power flow in an electricity grid, citation

network of papers

• Topological ordering: For every directed edge i → j ,

vertex i comes before j in the ordering:

(1,2,3,4,6,9,10,11,12,8,7,5,13)

• With a topological ordering, the adjacency matrix of

an acyclic directed network is strictly triangular
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Why is it called the Laplacian?

What does this matrix have to do with the second-order Laplacian:

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(1)

from continuous physics?

On a 1d lattice, for each link (difference) from K t get ui − ui−1 ∼ d
dx . From L = KK t get

2ui − ui−1 − ui+1 ∼ d2

dx2 .

Similarly for 2d lattice, from the Laplacian you get

4ui,j − ui+1,j − ui−1,j − ui,j+1 − ui,j−1 ∼
∂2

∂x2
+

∂2

∂y2
(2)

which is a second-order difference in both x and y directions.

In fact you can do interesting discrete physics with these matrices (more later...).
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(Co)homology analogy

K ↔ δ (1d boundary operator)

K t ↔ d (0d differential)

L = KK t ↔ ∆ = d ∗ d (0d Laplacian)

On a 1d lattice, for each link (difference) from K t get ui − ui−1 ∼ d
dx . From L = KK t get

2ui − ui−1 − ui+1 ∼ d2

dx2 .

Similarly for 2d lattice.
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Computing the Linear Power

Flow



The goal of power flow analysis

The goal of a power/load flow analysis is to find the

flows in the lines of a network given a power

injection pattern at the nodes.

I.e. given power injection at the nodes

Pi =


50

50

0

−100


what are the flows in lines 1-4?

To find the flows, it is sufficient to know the

impedances of the lines and the voltages at each

node.
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Framing the load flow problem

Suppose we have N nodes labelled by i , and L edges labelled by ` forming a directed graph G .

Suppose at each node we have a power imbalance pi (pi > 0 means its generating more than

it consumes and pi < 0 means it is consuming more than it).

Since we cannot create or destroy energy (and we’re ignoring losses):∑
i

pi = 0

Question: How do the flows f` in the network relate to the nodal power imbalances?

Answer: According to the impedances (generalisation of resistance for oscillating

voltage/current) and the corresponding voltages.
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Ohm’s Law

Ohm’s Law: The potential difference (voltage) V1 − V2 across an ideal conductor is

proportional to the current through it I . The constant of proportionality is called the

resistance, R. Ohm’s Law is thus:

V1 − V2 = I R

58



Analogy DC circuits to linear power flow

The equations for DC circuits and linear power flow in AC circuits are analogous:

I =
Vi − Vj

R
↔ f` =

θi − θj
x`

if we make the following identification:

Current flow I ↔ Active power flow f`

Potential/voltage Vi ↔ Voltage angle θi

Resistance R ↔ Reactance X

The simplifications that lead to the linear power flow will be explained in the next lecture.
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Kirchhoff’s Current Law (KCL)

KCL inforces energy conservation at each vertex (the power imbalance equals what goes out

minus what comes in).

+5

−5

+5

+12

−2

−7 −3

12

7 3
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Kirchhoff’s Current Law (KCL)

KCL says (in this linear setting) that the nodal power imbalance at node i is equal to the sum

of direct flows arriving at the node. This can be expressed compactly with the incidence matrix

pi =
∑
`

Ki`f` ∀i
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Kirchhoff’s Voltage Law (KVL)

KCL isn’t enough to determine the flow as soon as there are closed cycles in the network. For

this we need Ohm’s law in combination with KVL: voltage differences around each cycle add up

to zero.

+6 0

−6

?

??

For equal reactances for each edge:

+6 0

−6

2

2−4

NB: For directed graph, sign determines

direction of flow. 62



Kirchhoff’s Voltage Law (KVL)

KVL says that the sum of voltage differences across edges for any closed cycle must add up to

zero.

If the voltage at any node is given by θi (this is infact the voltage angle - more next time) then

the voltage difference across edge ` is ∑
i

Ki`θi

And Kirchhoff’s law can be expressed using the cycle matrix encoding of independent cycles∑
`

C`c

∑
i

Ki`θi = 0 ∀c

[Automatic, since we already said KC = 0.]
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Kirchhoff’s Voltage Law (KVL)

If we express the flow on each line in terms of the voltage angle (a relative of V = IR) then for

a line ` with reactance x`

f` =
θi − θj
x`

=
1

x`

∑
i

Ki`θi

KVL now becomes ∑
`

C`cx`f` = 0 ∀c
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Solving the equations

If we combine

f` =
1

x`

∑
i

Ki`θi

with Kirchhoff’s Current Law we get

pi =
∑
`

Ki`f` =
∑
`

Ki`
1

x`

∑
j

Kj`θj

This is a weighted Laplacian. If we write Bk` for the diagonal matrix with B`` = 1
x`

then

L = KBK t

and we get a discrete Poisson equation for the θi sourced by the pi

pi =
∑
j

Lijθj

We can solve this for the θi and thus find the flows.

65



Solving the equations

Given pi at every node, we want to find the flows f`. We have the equations

pi =
∑
j

Lijθj

f` =
1

x`

∑
i

Ki`θi

Basic idea: invert L to get θi in terms of pi

θi =
∑
k

(L−1)ikpk

then insert to get the flows as a linear function of the power injections pi

f` =
1

x`

∑
i,k

Ki`(L
−1)ikpk =

∑
k

PTDF`kpk

called the Power Transfer Distribution Factors (PTDF).

The catch: L is not invertible because of the zero eigenvalues. More next time!
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