
Unless otherwise stated, graphics and text are Copyright c©Tom Brown, 2020. Graphics and text for which no

other attribution are given are licensed under a Creative Commons Attribution 4.0 International Licence. cb

Energy System Modelling

Summer Semester 2020, Lecture 16

Dr. Tom Brown, tom.brown@kit.edu, https://nworbmot.org/

Karlsruhe Institute of Technology (KIT), Institute for Automation and Applied Informatics (IAI)

https://creativecommons.org/licenses/by/4.0/
mailto:tom.brown@kit.edu
https://nworbmot.org/


Table of Contents

1. The World is Not a Perfect Optimization Model

2. Robustness to Different Weather Years

3. Effects of Climate Change on Energy System

4. Cost and Political Uncertainty

5. Near-Optimal Energy Systems

1



The World is Not a Perfect

Optimization Model



We should be skeptical about models and modellers
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We should be skeptical about models and modellers

• Possible scenario projected

from 1956 by US geologist

M. King Hubbert

• Oil production in the US did

indeed peak in the 1970s,

but returned to peak height

in last decade thanks to shale

oil extraction with fracking

• Nuclear expanded but

plateaued

• What might we be getting

wrong in 2020?

3
Source: Hubbert, 1956

http://www.energycrisis.com/Hubbert/1956/1956.pdf


We should be skeptical about models and modellers

Models can:

• under- or overestimate rates of change (e.g. under: PV uptake, over: onshore wind in

UK/Germany/Netherlands)

• underestimate social factors (e.g. concern about nuclear / transmission / wind)

• extrapolate based on uncertain data (e.g. oil reserves, learning curves for PV)

• focus on easy-to-solve rather than policy-relevant problems (e.g. most research)

• neglect uncertainty (e.g. in short-term due to weather forecasts, or in long-term due to

cost, political uncertainty and technological development)

• neglect need for robustness (e.g. securing energy system against contingencies, attack)

• neglect complex interactions of markets and incentive structures (e.g. abuse of

market power, non-linearities not represented in models, lumpiness, etc.)

• neglect non-linearities and non-convexities (e.g. power flow, or also learning curves,

behavioural effects, perverse local optima, many, many more) 4



Robustness to Different Weather

Years



Different Weather Years

Many of the simulations we looked at in this course, and many in the literature, used single

weather years to determine optimal investments.

This is problematic since:

• Weather changes from year to year

• There are decadal variations of wind

• Demand changes (particularly space heating demand during cold years)

But computing investments against 30 years of data (262,800 hours) is not feasible.
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Different Weather Years

If we use different weather years to optimize sector-coupled European model with net-zero CO2

emissions (including industry) we see broadly stable technology choices but variations in total

system costs of up to 20%. NB: In real world cannot reoptimize investment every year!
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Source: Lin Yang MA thesis



Different Weather Years

Biggest changes are driven by space heating demand. Cold years (like 2010) are more expensive.
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Source: Lin Yang MA thesis



Different Weather Years

Optimal technology investments do not change dramatically from year to year. Here we show

the mean capacities with standard deviation.
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Source: Lin Yang MA thesis



Different Weather Years

If we fix the optimal technology investments based on the weather of one year (x-axis), then

run the dispatch over all 30 years (900 simulations in total), we can assess average curtailment

and load-shedding. Using coldest year 2010 gives low load-shedding but high curtailment.
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Source: Lin Yang MA thesis



Using 2010 investments

Using coldest year 2010 guarantees virtually no load-shedding in entire 30 years, but leads to

excess energy in most years. Better to store excess energy from warmer years (e.g. chemically).
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Source: Lin Yang MA thesis



Effects of Climate Change on

Energy System



Climate change

• What are the consequences of climate change for highly renewable energy systems?

• How will generation patterns for wind and solar change?

• What will be the effects on the dimensioning of wind, solar, storage, networks and backup

generation?
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Climate change scenarios: RCP 8.5

Take a simulated dataset of how the weather would look between today and the year 2100 with

a scenario of high concentrations of greenhouse gases.

The scenario is called Representative Concentration Pathways 8.5 (RCP 8.5), since it estimates

a radiative forcing of ∆P = 8.5 W/m2 (difference between insolation and energy radiated into

space) at the end of the century. It is a worst-case scenario and extrapolates current

greenhouse gas emissions without reduction efforts (improbable given current trajectories of

coal, renewables and EVs). This corresponds to a CO2-equivalent-concentration (including all

forcing agents) of approximately 1250 ppm (today around 410 pmm for CO2) and an average

temperature increase of ∆T = 3.7± 1.1 C at the end of the century, dependent on the model

used.

Compare historical values (HIS) to begin/middle/end of the century (B/M/EOC).
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Changes to wind capacity factors

Left: historic (HIS) wind capacity factors 1970-2005

Right: change at end of century (EOC) 2070-2100

• Small (∼ 5%) average

increase in Northern

Europe

• Small (∼ 5%) average

decrease in Southern

Europe

13
Source: Schlott et al, 2018

https://arxiv.org/abs/1805.11673


Changes to solar capacity factors

• Small (∼ 5%) increase in

in Southern Europe

around Mediterranean

• Smallish (∼ 10%)

decrease in Northern

Europe (due to increased

cloud cover)

• Solar results known to be

a little unreliable because

of cloud modelling etc.

14
Source: Schlott et al, 2018

https://arxiv.org/abs/1805.11673


Correlation Length

The Pearson correlation coefficient of wind time series

with a point in northern Germany decays exponentially

with distance. Determine the correlation length L by

fitting the function:

ρ ∼ e−
x
L

to the radial decay with distance x .
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Source: Hagspiel et al, 2012

https://doi.org/10.1016/j.apenergy.2011.10.039


Changes to wind speed correlation lengths

• Correlation lengths are longer

in the North than the South

because of big weather systems

that roll in from the Atlantic

to the North (in the South

they get dissipated).

• With global warming,

correlation lengths grow longer

in the North and shorter in the

South.

• This is because weather

systems have more energy and

are bigger in the North.

16
Source: Schlott et al, 2018

https://arxiv.org/abs/1805.11673


Effects of climate change on power system

Conclusions from study of effects on the power system:

• Most effects are small (∼ 5− 10%); total system costs increase by only 5%.

• Longer correlation lengths see greater benefit from continental transmission.

• Impact of climate change is of a similar magnitude to the uncertainty between the

different weather models.

• Not considered: Space heating and cooling demand changes may have bigger effect on

overall energy system.

• Not considered: Impact of extreme weather events (storms, fires, droughts).

For more results, see ‘The Impact of Climate Change on a Cost-Optimal Highly Renewable

European Electricity Network,’ https://arxiv.org/abs/1805.11673
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https://arxiv.org/abs/1805.11673


Cost and Political Uncertainty



Power System Model: Sensitivity to Changing Solar Cost

In 30-node European electricity system with 95% CO2 reduction, change solar capital cost

relative to default. NB: Even at zero solar cost, there is still wind. Why? Seasonality.

LV 0: No cross-border grid, LV 125: compromise grid, LV Opt: optimal grid.

18
Source: Schlachtberger et al, 2018

https://arxiv.org/abs/1803.09711


Power System Model: Sensitivity to Onshore Wind Installable Potential

In electricity system with 95% CO2 reduction, reduce installable potential for onshore wind.

Onshore substituted with offshore at only small extra system cost. BUT assumes sufficient grid

capacity within each country to get offshore from coast to load.

19
Source: Schlachtberger et al, 2018

https://arxiv.org/abs/1803.09711


Sensitivity of Optimisation to Cost, Weather Data and Policy Constraints

See Schlachtberger et al, ‘Cost optimal scenarios of a future highly renewable European

electricity system: Exploring the influence of weather data, cost parameters and policy

constraints,’ 2018, https://arxiv.org/abs/1803.09711
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Near-Optimal Energy Systems



Flat directions near optimum

Both for changing transmission expansion AND onshore wind installable potentials, we’ve seen

that total system costs are flat around the optimum.

Can we explore this near-optimal space more systematically?

1.0 1.5 2.0 2.5 3.0
Expansion Limit

0

50

100

150

200

250

300

Y
ea

rly
 s

ys
te

m
 c

os
t [

bi
lli

on
 e

ur
os

]

clusters = 181

transmission lines
onshore wind
offshore wind

solar
gas
gas (marginal)

PHS
hydro

hydrogen storage
battery storage

21



Large Space of Near-Optimal Energy Systems

There is a large degeneracy of different possible energy systems close to the optimum.
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Large Space of Near-Optimal Energy Systems

Consider the part of the feasible space within ε of the optimum f (x∗).
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Large Space of Near-Optimal Energy Systems

Now within ε of the optimum f (x∗), try minimising or maximising x , to probe space.
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Large Space of Near-Optimal Energy Systems

NB: Decision space of variables is multi-dimensional, so can probe only one direction at a time.
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Application: Highly-Renewable European Electricity System

Apply this technique to a 100-node model of the European electricity with 100% renewable

energy.

1. Find the least-cost power system.

2. For ε ∈ {0.5, 1, . . . , 10}% minimise/maximise investment in

• generation capacity (onshore and/or offshore wind, solar),

• storage capacity (hydrogen, batteries, total storage) and

• transmission volume (HVAC lines and HVDC links)

such that total annual system costs increase by less than ε.

Methodology adapted from Method to Generate Alternatives (MGA) but ‘alternatives’ are

forced in politically-interesting directions.

26
Source: Fabian Neumann



Example: 100% renewable electricity system for Europe

Capacity expansion in optimum: ε = 10% above optimum, minimise new grid:

27
Source: Neumann & Brown, 2020

https://arxiv.org/abs/1910.01891


Example: 100% renewable electricity system for Europe
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Within 10% of the optimum we can:

• Eliminate most grid expansion

• Exclude onshore or offshore wind or PV

• Exclude battery or most hydrogen

storage

Robust conclusions: wind, some

transmission, some storage, preferably

hydrogen storage, required for a

cost-effective solution.

This gives space to choose solutions with

higher public acceptance.

28
Source: Neumann & Brown, 2020

https://arxiv.org/abs/1910.01891


Flat directions allow society to choose based on other criteria

This flatness may allow us to choose

solutions with higher public acceptance at

only small extra cost.

These trade-offs will occupy us for the next

30 years!
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Dependencies: Extremes cannot be achieved simultaneously

Optimal System Layout
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Near-Optimal Systems: Conclusions

• Optimizing a single model gives a false sense of exactness.

• There are many uncertainties about cost assumptions and political targets.

• There are also structural model uncertainties since the feasible space can be very flat

near the optimum, such that the solution chosen is random within flat area.

• We can use these techniques to probe the near-optimal space.

• This gives us fuzzier but more robust conclusions (e.g. need wind, some transmission and

some long-term storage for a cost-effective solution).

• It also allows us to find cost-effective solutions with higher public acceptance.

More details: Fabian Neumann, Tom Brown, “The Near-Optimal Feasible Space of a

Renewable Power System Model,” 2020, accepted to PSCC 2020,

https://arxiv.org/abs/1910.01891.
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