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Optimisation: Motivation



What to do about variable renewables?

Backup energy costs money and may also cause CO2 emissions.

Curtailing renewable energy is also a waste.

We consider four options to deal with variable renewables:

1. Smoothing stochastic variations of renewable feed-in over larger areas, e.g. the whole of

European continent.

2. Using storage to shift energy from times of surplus to deficit.

3. Shifting demand to different times, when renewables are abundant.

4. Consuming the electricity in other sectors, e.g. transport or heating.

Optimisation in energy networks is a tool to assess these options.
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Why optimisation?

In the energy system we have lots of degrees of freedom:

1. Power plant and storage dispatch

2. Renewables curtailment

3. Dispatch of network elements (e.g. High Voltage Direct Current (HVDC) lines)

4. Capacities of everything when considering investment

but we also have to respect physical constraints:

1. Meet energy demand

2. Do not overload generators or storage

3. Do not overload network

and we want to do this while minimising costs. Solution: optimisation.
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Optimisation: Introduction



A simple optimisation problem

Consider the following problem. We have a function f (x , y) of two variables x , y ∈ R

f (x , y) = 3x

and we want to find the maximum of this function in the x − y plane

max
x,y∈R

f (x , y)

subject to the following constraints

x + y ≤ 4 (1)

x ≥ 0 (2)

y ≥ 1 (3)

Optimal solution: x∗ = 3, y∗ = 1, f (x∗, y∗) = 9.

NB: We would have gotten the same solution if we had removed the 2nd constraint - it is

non-binding.
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Another simple optimisation problem

We can also have equality constraints. Consider the maximum of this function in the x − y − z

space

max
x,y ,z∈R

f (x , y , z) = (3x + 5z)

subject to the following constraints

x + y ≤ 4

x ≥ 0

y ≥ 1

z = 2

Optimal solution: x∗ = 3, y∗ = 1, z∗ = 2, f (x∗, y∗, z∗) = 19.
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Energy system mapping to an optimisation problem

This optimisation problem has the same basic form as our energy system considerations:

Objective function to minimise
↔

Minimise total costs

Optimisation variables
↔

Physical degrees of freedom (power

plant dispatch, etc.)

Constraints
↔

Physical constraints (overloading,

etc.)

Before we apply optimisation to the energy system, we’ll do some theory.
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Optimisation: Theory



Optimisation problem

We have an objective function f : Rk → R

max
x

f (x)

[x = (x1, . . . xk)] subject to some constraints within Rk :

gi (x) = ci ↔ λi i = 1, . . . n

hj(x) ≤ dj ↔ µj j = 1, . . .m

λi and µj are the Karush-Kuhn-Tucker (KKT) multipliers (basically Lagrange multipliers)

we introduce for each constraint equation. Each one measures the change in the objective

value of the optimal solution obtained by relaxing the constraint by a small amount. They are

also known as the shadow prices of the constraints.
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Feasibility

The space X ⊂ Rk which satisfies

gi (x) = ci ↔ λi i = 1, . . . n

hj(x) ≤ dj ↔ µj j = 1, . . .m

is called the feasible space.

It will have dimension lower than k if there are independent equality constraints.

It may also be empty (e.g. for k = 1, x ≥ 1, x ≤ 0 in R1), in which case the optimisation

problem is called infeasible.

It can be convex or non-convex.

If all the constraints are affine, then the feasible space is a convex polygon.
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Lagrangian

We now study the Lagrangian function

L(x , λ, µ) = f (x)−
∑
i

λi [gi (x)− ci ]−
∑
j

µj [hj(x)− dj ]

We’ve built this function using the variables λi and µj to better understand the optimal

solution of f (x) given the constraints.

The optima of L(x , λ, µ) tell us important information about the optima of f (x) given the

constraints.

It is entirely analogous to the physics Lagrangian L(x , ẋ , λ) except we have no explicit time

dependence ẋ and we have additional constraints which are inequalities.

We can already see that if ∂L
∂λi

= 0 then the equality constraint gi (x) = c will be satisfied.

[Beware: ± signs appear differently in literature, but have been chosen here such that λi = ∂L
∂ci

and µj = ∂L
∂dj

.]
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KKT conditions

The Karush-Kuhn-Tucker (KKT) conditions are necessary conditions that an optimal

solution x∗, µ∗, λ∗ always satisfies (up to some regularity conditions):

1. Stationarity: For ` = 1, . . . k

∂L
∂x`

=
∂f

∂x`
−
∑
i

λ∗i
∂gi
∂x`
−

∑
j

µ∗j
∂hj
∂x`

= 0

2. Primal feasibility:

gi (x
∗) = ci

hj(x
∗) ≤ dj

3. Dual feasibility: µ∗j ≥ 0

4. Complementary slackness: µ∗j (hj(x
∗)− dj) = 0
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Complementarity slackness for inequality constraints

We have for each inequality constraint

µ∗j ≥ 0

µ∗j (hj(x
∗)− dj) = 0

So either the inequality constraint is binding

hj(x
∗) = dj

and we have µ∗j ≥ 0.

Or the inequality constraint is NOT binding

hj(x
∗) < dj

and we therefore MUST have µ∗j = 0.

If the inequality constraint is non-binding, we can remove it from the optimisation problem,

since it has no effect on the optimal solution.
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Nota Bene

1. The KKT conditions are only sufficient for optimality of the solution under certain

conditions, e.g. linearity of the problem.

2. Since at the optimal solution we have gi (x
∗) = ci for equality constraints and

µ∗j (hj(x
∗)− dj) = 0, we have

L(x∗, λ∗, µ∗) = f (x∗)
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How we will use the KKT conditions

Usually we will have enough constraints to determine the k values x∗` for ` = 1, . . . k uniquely,

i.e. k independent constraints will be binding and the objective function is never constant

along any constraint.

We will use the KKT conditions, primarily stationarity, to determine the values of the k KKT

multipliers for the independent binding constraints.

Dimensionality check: we need to find k KKT multipliers and we have k equations from

stationarity to find them. Good!

The remaining KKT multipliers are either zero (for non-binding constraints) or dependent on

the k independent KKT multipliers in the case of dependent constraints.

(There are also degenerate cases where the optimum is not at a single point, where things will

be more complicated, e.g. when objective function is constant along a constraint.)
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Return to simple optimisation problem

We want to find the maximum of this function in the x − y plane

max
x,y∈R

f (x , y) = 3x

subject to the following constraints (now with KKT multipliers)

x + y ≤ 4 ↔ µ1

−x ≤ 0 ↔ µ2

−y ≤ −1 ↔ µ3

We know the optimal solution in the primal variables x∗ = 3, y∗ = 1, f (x∗, y∗) = 9.

What about the dual variables µi?

Since the second constraint is not binding, by complementarity µ∗2(−x∗ − 0) = 0 we have

µ∗2 = 0. To find µ∗1 and µ∗3 we have to do more work.
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Simple problem with KKT conditions

We use stationarity for the optimal point:

0 =
∂L
∂x

=
∂f

∂x
−
∑
i

λ∗i
∂gi
∂x
−
∑
j

µ∗j
∂hj
∂x

= 3− µ∗1 + µ∗2

0 =
∂L
∂y

=
∂f

∂y
−
∑
i

λ∗i
∂gi
∂y
−
∑
j

µ∗j
∂hj
∂y

= −µ∗1 + µ∗3

From which we find:

µ∗1 = 3− µ∗2 = 3

µ∗3 = µ∗1 = 3

Check interpretation: µj = ∂L
∂dj

with dj → dj + ε.
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Return to another simple optimisation problem

We want to find the maximum of this function in the x − y − z space

max
x,y ,z∈R

f (x , y) = 3x + 5z

subject to the following constraints (now with KKT multipliers)

x + y ≤ 4 ↔ µ1

−x ≤ 0 ↔ µ2

−y ≤ −1 ↔ µ3

z = 2 ↔ λ

We know the optimal solution in the primal variables

x∗ = 3, y∗ = 1, z∗ = 2, f (x∗, y∗, z∗) = 19.

What about the dual variables µi , λ?

We get same solutions to µ∗1 = 3, µ∗2 = 0, µ∗3 = 3 because they’re not coupled to z direction.

What about λ∗?
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Another simple problem with KKT conditions

We use stationarity for the optimal point:

0 =
∂L
∂z

=
∂f

∂z
−
∑
i

λ∗i
∂gi
∂z
−
∑
j

µ∗j
∂hj
∂z

= 5− λ∗

From which we find:

λ∗ = 5

Check interpretation: λi = ∂L
∂ci

with ci → ci + ε.
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An example for you to do

Find the values of x∗, y∗, µ∗i
max
x,y∈R

f (x , y) = y

subject to the following constraints

y + x2 ≤ 4 ↔ µ1

y − 3x ≤ 0 ↔ µ2

−y ≤ 0 ↔ µ3
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Optimisation: Solution

Algorithms



Optimisation solution algorithms

In general finding the solution to optimisation problems is hard, at worst NP-hard. Non-linear,

non-convex and/or discrete (i.e. some variables can only take discrete values) problems are

particularly troublesome.

There is specialised software for solving particular classes of problems (linear, quadratic,

discrete etc.).

Since we will mostly focus on linear problems, the main two algorithms of relevance are:

• The simplex algorithm

• The interior-point algorithm
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Simplex algorithm

The simplex algorithm works for linear problems by

building the feasible space, which is a

multi-dimensional polyhedron, and searching its

surface for the solution.

If the problem has a solution, the optimum can be

assumed to always occur at (at least) one of the

vertices of the polyhedron. There is a finite

number of vertices.

The algorithm starts at a feasible vertex. If it’s not

the optimum, the objective function will increase

along one of the edges leading away from the

vertex. Follow that edge to the next vertex.

Repeat until the optimum is found.

Complexity: On average over given set of

problems can solve in polynomial time, but worst

cases can always be found with exponential time. 20
Source: Wikipedia

https://en.wikipedia.org/wiki/Simplex_algorithm#/media/File:Simplex-method-3-dimensions.png


Interior point methods

Interior point methods can be used on more

general non-linear problems. They search the

interior of the feasible space rather than its surface.

They achieve this by extremising the objective

function plus a barrier term that penalises

solutions that come close to the boundary.

As the penality becomes less severe the algorithm

converges to the optimum point at the boundary.

Complexity: For linear problems, Karmakar’s

version of the interior point method can run in

polynomial time.
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https://en.wikipedia.org/wiki/Interior-point_method#/media/File:Karmarkar.svg


Interior point methods: Barrier method

Take a problem

min
{xi ,i=1,...n}

f (x)

such that for

cj(x) = 0↔ λj , j = 1 . . . k

x ≥ 0

Any optimisation problem can be brought into this form. Introduce the barrier function

B(x , µ) = f (x)− µ
n∑

i=1

ln(xi )

where µ is the small and positive barrier parameter (a scalar). Note that the barrier term

penalises solutions when x comes close to 0 by becoming large and positive.
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Interior point methods: Barrier method

The problem

min
{xi ,i=1,...n}

[
f (x)− µ

n∑
i=1

ln(xi )

]
such that

cj(x) = 0↔ λj , j = 1 . . . k

can now be solved using the extremisation of the Lagrangian like we did for KKT sufficiency.

Solve the following equation system iteratively using the Newton method to find the xi and λj :

∇i f (x)− µ 1

xi
+
∑
j

λj∇icj(x) = 0

cj(x) = 0

See this nice video for more details and visuals.
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https://www.youtube.com/watch?v=zm4mfr-QT1E
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