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Optimisation Energy System Opera-

tion: Network



Generators at a single node

Last time we saw that if the demand is inelastic and fixed, welfare

maximisation is equivalent to a generation cost minimisation problem:

min
{gs}

∑
s

osgs

such that: ∑
s

gs − d = 0 ↔ λ

gs ≤ Gs ↔ µ̄s

−gs ≤ 0 ↔ µ
¯s
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Several generators at different nodes in a network

Now let’s suppose we have several nodes i with different loads and

different generators, with flows f` in the network lines (we use the linear

power flow approximation).

Now we have additional optimisation variables f` AND additional

constraints:

min
{gi,s},{f`}

∑
i,s

oi,sgi,s

such that demand is met either by generation or by the network at each

node i ∑
s

gi,s − di =
∑
`

Ki`f` ↔ λi

and generator constraints are satisified

gi,s ≤ Gi,s ↔ µ̄i,s

−gi,s ≤ 0 ↔ µ
¯i,s
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Several generators at different nodes in a network

In addition we have constraints on the line flows.

First, they have to satisfy Kirchoff’s Voltage Law (KVL) for each cycle c∑
c

C`cx`f` = 0 ↔ λc

In addition the flows cannot overload the thermal limits, |f`| ≤ F`

f` ≤ F` ↔ µ̄`

−f` ≤ F` ↔ µ
¯`
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Simplest example: two nodes connected by a single line

At node 1 we have demand of d1 = 100 MW and a generator with costs

o1 = 10 e/MWh and a capacity of G1 = 300 MW.

At node 2 we have demand of d2 = 100 MW and a generator with costs

o1 = 20 e/MWh and a capacity of G2 = 300 MW.

What happens if the capacity of the line connecting them is F` = 0?

What about F` = 50 MW?

What about F` =∞?
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Congestion rent

In this example we saw that the sum of what consumers pay does not

always equal the sum of generator revenue.

In fact if we take the balance constraint and sum it weighted by the

market price at each node we find∑
i

λ∗i di −
∑
i

λ∗i
∑
s

g∗i,s = −
∑
i

λ∗i
∑
`

Ki`f
∗
`

The quantity for each `

−f ∗`
∑
i

Ki`λ
∗
i = f`(λ

∗
end − λ∗start)

is called the congestion rent and is the money the network operator

receives for transferring power from a low price node (start) to a high

price node (end), ‘buy it low, sell it high’.

It is zero if: a) the flow is zero or b) the price difference is zero.
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Storage Optimisation



Storage equations

Now, like the network case where we add different nodes i with different

loads, for storage we have to consider different time periods t.

Label conventional generators by s, storage by r and now minimise

min
{gi,s,t},{gi,r,t,store},{gi,r,t,dispatch},{f`,t}∑
i,s,t

oi,sgi,s,t +
∑
i,r ,t

oi,r ,store gi,r ,t,store +
∑
i,r ,t

oi,r ,dispatch gi,r ,t,dispatch


The power balance constraints are now (cf. Lecture 4) for each node i

and time t that the demand is met either by generation, storage or

network flows:∑
s

gi,s,t +
∑
r

(gi,r ,t,dispatch − gi,r ,t,store)− di,t =
∑
`

Ki`f`,t ↔ λi,t
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Storage equations

We have constraints on normal generators

0 ≤ gi,s,t ≤ Gi,s

and on the storage

0 ≤ gi,r ,t,dispatch ≤ Gi,r ,dispatch

0 ≤ gi,r ,t,store ≤ Gi,r ,store

The energy level of the storage is given by

ei,r ,t = η0ei,r ,t−1 + η1gi,r ,t,store − η−12 gi,r ,t,dispatch

and limited by

0 ≤ ei,r ,t ≤ Ei,r
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Storage equations

Finally for the flows we repeat the constraints for each time t.

We have KVL for the flows, therefore for each cycle c and time t∑
c

C`cx`f`,t = 0 ↔ λc,t

and in addition the flows cannot overload the thermal limits, |f`,t | ≤ F`

f`,t ≤ F` ↔ µ̄`,t

−f`,t ≤ F` ↔ µ
¯`,t
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Idea of storage

Storage does ‘buy it low, sell it high’ arbitrage, like network, but in time

rather than space, i.e. between cheap times (e.g. with lots of

zero-marginal-cost renewables) and expensive times (e.g. with high

demand, low renewables and expensive conventional generators).
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Duration Curves and Capacity Fac-

tors: Examples from Germany in 2015



Load curve

Here’s the electrical demand (load) in Germany in 2015:
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To understand this curve better and its implications for the market, it’s

useful to stack the hours of the year from left to right in order of the

amount of load.
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Load duration curve

This re-ordering is called a duration curve.

For the load it’s the load duration curve.
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Nuclear curve

Can do the same for nuclear output:
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Nuclear duration curve

Duration curve is pretty flat, because it is economic to run nuclear almost

all the time as baseload plant:
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The equivalent fraction of time that the plants run at full capacity over

the year is the capacity factor - nuclear has a high capacity factor,

usually around 70-90%.
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Gas curve

Can do the same for gas output:
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Gas duration curve

Duration curve is partially flat (for heat-driven CHP) and partially peaked

(for peaking plant):
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The capacity factor for gas is much lower - more like 20%.
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Price curve

Can do the same for price during the year:
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Price duration curve

Price duration curve:
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Question

Now we are in a position to consider the questions:

• What determines the distribution of investment in different

generation technologies?

• How is it connected to variable costs, capital costs and capacity

factors?

We will find the price and load duration curves very useful.
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Investment Optimisation: Generation



Investment optimisation

Now we also optimise investment in the capacities of generators,

storage and network lines, to maximise long-run efficiency.

We will promote the capacities Gi,s , Gi,r ,∗, Ei,r and F` to optimisation

variables.

For generation investment, we want to answer the following questions:

• What determines the distribution of investment in different

generation technologies?

• How is it connected to variable costs, capital costs and capacity

factors?

We will find price and load duration curves very useful.
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Definition of long-run efficiency

Up until now we have considered short-run equilibria that ensure

short-run efficiency (static), i.e. they make the best use of presently

available productive resources.

Long-run efficiency (dynamic) requires in addition the optimal

investment in productive capacity.

Concretely: given a set of options, costs and constraints for different

generators (nuclear/gas/wind/solar) what is the optimal generation

portfolio for maximising long-run welfare?

From an indivdual generators’ perspective: how best should I invest in

extra capacity?

We will show again that with perfect competition and no barriers to

entry, the system-optimal situation can be reached by individuals

following their own profit.
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Baseload versus Peaking Plant

Load (= Electrical Demand) is low during night; in Northern Europe in

the winter, the peak is in the evening.

To meet this load profile, cheap baseload generation runs the whole

time; more expensive peaking plant covers the difference.
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Different types of generators

Fuel/Prime Marginal Capital Controllable Predictable CO2

mover cost cost days ahead

Oil V. High Low Yes Yes Medium

Gas OCGT High Low Yes Yes Medium

Gas CCGT Medium Medium Yes Yes Medium

Hard Coal Medium Lowish Yes Yes High

Brown Coal Low Medium Yes Yes High

Nuclear V. Low High Partly Yes Zero

Hydro dam Zero High Yes Yes Zero

Wind/Solar Zero High Down No Zero
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System-optimal generator capacities and dispatch

Suppose we have generators labelled by s at a single node with marginal

costs os arising from each unit of production gs,t and capital costs cs
that arise from fixed costs regardless of the rate of production (such as

the investment in building capacity Gs). For a variety of demand values

dt in representative situation t we optimise the total system costs

min
{gs,t},{Gs}

[∑
s

csGs +
∑
s,t

osgs,t

]
such that ∑

s

gs,t = dt ↔ λt

−gs,t ≤ 0 ↔ µ
¯s,t

gs,t − Gs ≤ 0 ↔ µ̄s,t

We will also allow load-shedding with a ‘dummy’ generator s = S ,

oS = V (Value of Lost Load), cS = 0 (the capacity to shed load doesn’t

cost anything, so can be as big as dt if necessary).
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System-optimal generator capacities and dispatch

Stationarity gives us for each s and t:

0 =
∂L
∂gs,t

= os − λ∗t − µ̄∗s,t + µ
¯

∗
s,t

and for each s:

0 =
∂L
∂Gs

= cs +
∑
t

µ̄∗s,t

and from complementarity we get

µ̄∗s,t(g
∗
s,t − G∗s ) = 0

µ
¯

∗
s,t
g∗s,t = 0

and dual feasibility (for minimisation) µ̄∗s,t , µ
¯

∗
s,t
≤ 0.
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System-optimal generator capacities and dispatch

The solution for the dispatch g∗s,t is exactly the same as without capacity

optimisation. For each t, find m such that
∑m−1

s=1 Gs < dt <
∑m

s=1 Gs .

For s < m we have g∗s,t = G∗s , µ
¯

∗
s,t

= 0, µ̄∗s,t = os − λ∗t ≤ 0.

For s = m we have g∗m,t = dt −
∑m−1

s=1 G∗s to cover what’s left of the

demand. Since 0 < g∗m,t < Gm we have µ
¯

∗
m,t

= µ̄∗m,t = 0 and therefore

λ∗t = om.

For s > m we have g∗s,t = 0, µ
¯

∗
s,t

= λ∗t − os ≤ 0, µ̄∗s,t = 0.

What about the G∗s ?
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System-optimal generator capacities and dispatch

The G∗s are determined implicitly based on the interactions between costs

and prices.

From stationarity we had the relation

cs = −
∑
t

µ̄∗s,t

The µ̄∗s,t were only non-zero with λ∗t > os so we can re-write this as

cs =
∑

t|λ∗
t >os

(λ∗t − os)

‘Increase capacity until marginal increase in profit equals the cost of extra

capacity.’

32



Multiple price duration

The optimal mix of generation is where, for each generation type, the

area under the price–duration curve and above the variable cost of that

generation type is equal to the fixed cost of adding capacity of that

generation type. (In the graphic cs is os in our notation.)
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Multiple generators with inelastic demand

Assume again we have o1 ≤ o2 ≤ · · · ≤ oS = V and Kp =
∑p

s=1 Gs then:

λt =

{
V for dt > KS−1

os if Ks−1 < dt ≤ Ks , for s = 1, . . .S − 1

Looking at the area under the price duration curve but above the variable

cost, we then find:

cs = (V − os)P(d > KS−1) +
S−1∑
j=s+1

(oj − os)P(Kj−1 < d ≤ Kj)
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Screening curve

These equations can be rewritten recursively using the substitution

θs = P(d > Ks):

cS−1 + θS−1oS−1 = V θS−1

cs + θsos = cs+1 + θsos+1 ∀s = 1, . . .S − 2

The first equation can be solved to find θS−1, then the other equations

can be solved recursively to find the remaining θs . The θs correspond to

the optimal capacity factors of each type of generator, which

correspond to the fraction of time the generator runs at full power.
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Screening curve

The costs as a function of the capacity factors can be drawn together as

a screening curve (more expensive options are screened from the

optimal inner polygon).

The intersection points determine the optimal capacity factors and hence,

using the load duration curve, the optimal capacities of each generator

type. (In the graphic fs is cs in our notation.)

36
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Screening curve versus Load duration
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Example: 2 generation technologies and load shedding

Suppose that electrical demand is inelastic with a demand-duration curve

given by d(x) = 1000− 1000x for 0 ≤ x ≤ 1. Suppose that there are two

different types of generation with variable costs of 2 and 12 e/MWh

respectively, together with load-shedding at a cost of 1012 e/MWh. The

fixed costs of the two generation types are 15 and 10 e/MWh

respectively. See the below table for a summary of the costs.

Generator os [e/MWh] cs [e/MW/h]

A 2 15

B 12 10

LS 1012 0
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Example: 2 generation technologies and load shedding

1. What is the interpretation of the demand-duration curve?

2. Below which capacity factor x1 is it cheaper to run Generator B

rather than to run Generator A?

3. Below which capacity factor x0 is it cheaper to shed load than to run

Generator B?

4. Plot the costs as a function of x and mark these intersection points

on a screening curve.

5. Find the optimal capacities of Generators A and B in this market.
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Example: 2 generation technologies and load shedding

For the solution see the flipchart photos at

https://nworbmot.org/courses/esm-2018/board/.

To find x1, solve for the intersection of Generator A’s cost curve with

Generator B’s cost curve as a function of capacity factor:

cA + x1oA = cB + x1oB

This gives x1 = 0.5. At this point the demand is d(0.5) = 500 MW

therefore

GA = 500 MW

To find x0, solver for where Generator B crosses the load-shedding line:

cB + x0oB = cLS + x0oLS

This gives x0 = 0.01. At this point the demand is d(0.5) = 990 MW so:

GA + GB = 990 MW

i.e. GB = 490 MW and GLS = 10 MW.
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Investment Optimisation: Transmis-

sion



Investment optimisation: transmission

As before, our approach to the question of “What is the optimal

amount of transmission” is determined by the most efficient long-term

solution, i.e. the infrastructure investement that maximising social

welfare over the long-run.

Promote F` to an optimisation variable with capital cost c`.

In brief: Exactly as with generation dispatch and investment, we continue

to invest in transmission until the marginal benefit of extra transmission

(i.e. extra congestion rent for extra capacity) is equal to the marginal

cost of extra transmission. This determines the optimal investment level.
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