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Optimisation: Motivation



What to do about variable renewables?

Backup energy costs money and may also cause CO2 emissions.

Curtailing renewable energy is also a waste.

We consider four options to deal with variable renewables:

1. Smoothing stochastic variations of renewable feed-in over larger

areas, e.g. the whole of European continent.

2. Using storage to shift energy from times of surplus to deficit.

3. Shifting demand to different times, when renewables are abundant.

4. Consuming the electricity in other sectors, e.g. transport or

heating.

Optimisation in energy networks is a tool to assess these options.
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Why optimisation?

In the energy system we have lots of degrees of freedom:

1. Power plant and storage dispatch

2. Renewables curtailment

3. Dispatch of network elements (e.g. High Voltage Direct Current

(HVDC) lines)

4. Capacities of everything when considering investment

but we also have to respect physical constraints:

1. Meet energy demand

2. Do not overload generators or storage

3. Do not overload network

and we want to do this while minimising costs. Solution: optimisation.
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Optimisation: Introduction



A simple optimisation problem

Consider the following problem. We have a function f (x , y) of two

variables x , y ∈ R
f (x , y) = 3x

and we want to find the maximum of this function in the x − y plane

max
x,y∈R

f (x , y)

subject to the following constraints

x + y ≤ 4 (1)

x ≥ 0 (2)

y ≥ 1 (3)

Optimal solution: x∗ = 3, y∗ = 1, f (x∗, y∗) = 9.
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Another simple optimisation problem

We can also have equality constraints. Consider the maximum of this

function in the x − y − z space

max
x,y ,z∈R

f (x , y , z) = (3x + 5z)

subject to the following constraints

x + y ≤ 4

x ≥ 0

y ≥ 1

z = 2

Optimal solution: x∗ = 3, y∗ = 1, z∗ = 2, f (x∗, y∗, z∗) = 19.
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Energy system mapping to an optimisation problem

This optimisation problem has the same basic form as our energy system

considerations:

Objective function to

minimise
↔

Minimise total costs

Optimisation variables
↔

Physical degrees of free-

dom (power plant dis-

patch, etc.)

Constraints
↔

Physical constraints

(overloading, etc.)

Before we apply optimisation to the energy system, we’ll do some theory.
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Optimisation: Theory



Optimisation problem

We have an objective function f : Rk → R

max
x

f (x)

[x = (x1, . . . xk)] subject to some constraints within Rk :

gi (x) = ci ↔ λi i = 1, . . . n

hj(x) ≤ dj ↔ µj j = 1, . . .m

λi and µj are the KKT multipliers (basically Lagrange multipliers) we

introduce for each constraint equation; it measures the change in the

objective value of the optimal solution obtained by relaxing the constraint

(shadow price).

11



Feasibility

The space X ⊂ Rk which satisfies

gi (x) = ci ↔ λi i = 1, . . . n

hj(x) ≤ dj ↔ µj j = 1, . . .m

is called the feasible space.

It will have dimension lower than k if there are independent equality

constraints.

It may also be empty (e.g. x ≥ 1, x ≤ 0 in R), in which case the

optimisation problem is called infeasible.

It can be convex or non-convex.

If all the constraints are affine, then the feasible space is a convex

polygon.
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Lagrangian

We now study the Lagrangian function

L(x , λ, µ) = f (x)−
∑
i

λi [gi (x)− ci ]−
∑
j

µj [hj(x)− dj ]

We’ve built this function using the variables λi and µj to better

understand the optimal solution of f (x) given the constraints.

The optima of L(x , λ, µ) tell us important information about the optima

of f (x) given the constraints.

It is entirely analogous to the physics Lagrangian L(x , ẋ , λ) except we

have no explicit time dependence ẋ and we have additional constraints

which are inequalities.

We can already see that if ∂L
∂λi

= 0 then the equality constraint gi (x) = c

will be satisfied.

[Beware: ± signs appear differently in literature, but have been chosen

here such that λi = ∂L
∂ci

and µj = ∂L
∂dj

.]
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KKT conditions

The Karush-Kuhn-Tucker (KKT) conditions are necessary conditions

that an optimal solution x∗, µ∗, λ∗ always satisfies (up to some regularity

conditions):

1. Stationarity: For l = 1, . . . k

∂L
∂xl

=
∂f

∂xl
−
∑
i

λ∗i
∂gi
∂xl
−
∑
j

µ∗j
∂hj
∂xl

= 0

2. Primal feasibility:

gi (x
∗) = ci

hj(x
∗) ≤ dj

3. Dual feasibility: µ∗j ≥ 0

4. Complementary slackness: µ∗j (hj(x
∗)− dj) = 0
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Complementarity slackness for inequality constraints

We have for each inequality constraint

µ∗j ≥ 0

µ∗j (hj(x
∗)− dj) = 0

So either the inequality constraint is binding

hj(x
∗) = dj

and we have µ∗j ≥ 0.

Or the inequality constraint is NOT binding

hj(x
∗) < dj

and we therefore MUST have µ∗j = 0.

If the inequality constraint is non-binding, we can remove it from the

optimisation problem, since it has no effect on the optimal solution.
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Nota Bene

1. The KKT conditions are only sufficient for optimality of the

solution under certain conditions, e.g. linearity of the problem.

2. Since at the optimal solution we have gi (x
∗) = ci for equality

constraints and µ∗j (hj(x
∗)− dj) = 0, we have

L(x∗, λ∗, µ∗) = f (x∗)
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Return to simple optimisation problem

We want to find the maximum of this function in the x − y plane

max
x,y∈R

f (x , y) = 3x

subject to the following constraints (now with KKT multipliers)

x + y ≤ 4 ↔ µ1

−x ≤ 0 ↔ µ2

−y ≤ −1 ↔ µ3

We know the optimal solution in the primal variables

x∗ = 3, y∗ = 1, f (x∗, y∗) = 9.

What about the dual variables µi?

Since the second constraint is not binding, by complementarity

µ∗2(−x∗ − 0) = 0 we have µ∗2 = 0. To find µ∗1 and µ∗3 we have to do

more work.
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Simple problem with KKT conditions

We use stationarity for the optimal point:

0 =
∂L
∂x

=
∂f

∂x
−

∑
i

λ∗i
∂gi
∂x
−
∑
j

µ∗j
∂hj
∂x

= 3− µ1 + µ2

0 =
∂L
∂y

=
∂f

∂y
−

∑
i

λ∗i
∂gi
∂y
−
∑
j

µ∗j
∂hj
∂y

= −µ1 + µ3

From which we find:

µ∗1 = 3− µ∗2 = 3

µ∗3 = µ∗1 = 3

Check interpretation: µj = ∂L
∂dj

with dj → dj + ε.
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Return to another simple optimisation problem

We want to find the maximum of this function in the x − y − z space

max
x,y ,z∈R

f (x , y) = 3x + 5z

subject to the following constraints (now with KKT multipliers)

x + y ≤ 4 ↔ µ1

−x ≤ 0 ↔ µ2

−y ≤ −1 ↔ µ3

z = 2 ↔ λ

We know the optimal solution in the primal variables

x∗ = 3, y∗ = 1, z∗ = 2, f (x∗, y∗, z∗) = 19.

What about the dual variables µi , λ?

We get same solutions to µ∗1 = 3, µ∗2 = 0, µ∗3 = 3 because they’re not

coupled to z direction. What about λ∗?
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Another simple problem with KKT conditions

We use stationarity for the optimal point:

0 =
∂L
∂z

=
∂f

∂z
−
∑
i

λ∗i
∂gi
∂z
−
∑
j

µ∗j
∂hj
∂z

= 5− λ∗

From which we find:

λ∗ = 5

Check interpretation: λi = ∂L
∂ci

with ci → ci + ε.
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