Energy System Modelling Summer Semester 2018, Lecture 5

Dr. Tom Brown, tom.brown@kit.edu, https://nworbmot.org/ Karlsruhe Institute of Technology (KIT), Institute for Automation and Applied Informatics (IAI)

13th July 2018

- 1. Optimisation: Motivation
- 2. Optimisation: Introduction
- 3. Optimisation: Theory

Optimisation: Motivation

Backup energy costs money and may also cause CO₂ emissions.

Curtailing renewable energy is also a waste.

We consider **four options** to deal with variable renewables:

- 1. Smoothing stochastic variations of renewable feed-in over **larger areas**, e.g. the whole of European continent.
- 2. Using **storage** to shift energy from times of surplus to deficit.
- 3. Shifting demand to different times, when renewables are abundant.
- 4. Consuming the electricity in **other sectors**, e.g. transport or heating.

Optimisation in energy networks is a tool to assess these options.

Why optimisation?

In the energy system we have lots of **degrees of freedom**:

- 1. Power plant and storage dispatch
- 2. Renewables curtailment
- Dispatch of network elements (e.g. High Voltage Direct Current (HVDC) lines)
- 4. Capacities of everything when considering investment

but we also have to respect physical constraints:

- 1. Meet energy demand
- 2. Do not overload generators or storage
- 3. Do not overload network

and we want to do this while minimising costs. Solution: optimisation.

Optimisation: Introduction

A simple optimisation problem

Consider the following problem. We have a function f(x, y) of two variables $x, y \in \mathbb{R}$

$$f(x,y)=3x$$

and we want to find the maximum of this function in the x - y plane

 $\max_{x,y\in\mathbb{R}}f(x,y)$

subject to the following constraints

$$x + y \le 4 \tag{1}$$

$$x \ge 0$$
 (2)

$$y \ge 1 \tag{3}$$

A simple optimisation problem

Consider the following problem. We have a function f(x, y) of two variables $x, y \in \mathbb{R}$

$$f(x,y)=3x$$

and we want to find the maximum of this function in the x - y plane

 $\max_{x,y\in\mathbb{R}}f(x,y)$

subject to the following constraints

$$x + y \le 4 \tag{1}$$

$$x \ge 0$$
 (2)

$$y \ge 1 \tag{3}$$

Optimal solution: $x^* = 3, y^* = 1, f(x^*, y^*) = 9.$

We can also have equality constraints. Consider the maximum of this function in the x - y - z space

$$\max_{x,y,z\in\mathbb{R}}f(x,y,z)=(3x+5z)$$

subject to the following constraints

$$x + y \le 4$$
$$x \ge 0$$
$$y \ge 1$$
$$z = 2$$

We can also have equality constraints. Consider the maximum of this function in the x - y - z space

$$\max_{x,y,z\in\mathbb{R}}f(x,y,z)=(3x+5z)$$

subject to the following constraints

$$x + y \le 4$$
$$x \ge 0$$
$$y \ge 1$$
$$z = 2$$

Optimal solution: $x^* = 3, y^* = 1, z^* = 2, f(x^*, y^*, z^*) = 19.$

This optimisation problem has the same basic form as our energy system considerations:

Objective function to minimise	\leftrightarrow	Minimise total costs
Optimisation variables	\leftrightarrow	Physical degrees of free- dom (power plant dis- patch, etc.)
Constraints	\leftrightarrow	Physical constraints (overloading, etc.)

Before we apply optimisation to the energy system, we'll do some theory.

Optimisation: Theory

Optimisation problem

We have an **objective function** $f : \mathbb{R}^k \to \mathbb{R}$

$$\max_{x} f(x)$$

 $[x = (x_1, \dots, x_k)]$ subject to some **constraints** within \mathbb{R}^k :

$$g_i(x) = c_i \qquad \leftrightarrow \qquad \lambda_i \qquad i = 1, \dots n$$

 $h_j(x) \le d_j \qquad \leftrightarrow \qquad \mu_j \qquad j = 1, \dots m$

 λ_i and μ_j are the **KKT multipliers** (basically Lagrange multipliers) we introduce for each constraint equation; it measures the change in the objective value of the optimal solution obtained by relaxing the constraint (shadow price).

Feasibility

The space $X \subset \mathbb{R}^k$ which satisfies

$$g_i(x) = c_i \qquad \leftrightarrow \qquad \lambda_i \qquad i = 1, \dots n$$

 $h_j(x) \le d_j \qquad \leftrightarrow \qquad \mu_j \qquad j = 1, \dots m$

is called the **feasible space**.

It will have dimension lower than k if there are independent equality constraints.

It may also be empty (e.g. $x \ge 1, x \le 0$ in \mathbb{R}), in which case the optimisation problem is called **infeasible**.

It can be **convex** or **non-convex**.

If all the constraints are affine, then the feasible space is a convex polygon.

Lagrangian

We now study the Lagrangian function

$$\mathcal{L}(x,\lambda,\mu) = f(x) - \sum_{i} \lambda_{i} \left[g_{i}(x) - c_{i}\right] - \sum_{j} \mu_{j} \left[h_{j}(x) - d_{j}\right]$$

We've built this function using the variables λ_i and μ_j to better understand the optimal solution of f(x) given the constraints.

The optima of $\mathcal{L}(x, \lambda, \mu)$ tell us important information about the optima of f(x) given the constraints.

It is entirely analogous to the physics Lagrangian $L(x, \dot{x}, \lambda)$ except we have no explicit time dependence \dot{x} and we have additional constraints which are inequalities.

We can already see that if $\frac{\partial \mathcal{L}}{\partial \lambda_i} = 0$ then the equality constraint $g_i(x) = c$ will be satisfied.

[Beware: \pm signs appear differently in literature, but have been chosen here such that $\lambda_i = \frac{\partial \mathcal{L}}{\partial c_i}$ and $\mu_j = \frac{\partial \mathcal{L}}{\partial d_j}$.]

KKT conditions

The Karush-Kuhn-Tucker (KKT) conditions are necessary conditions that an optimal solution x^*, μ^*, λ^* always satisfies (up to some regularity conditions):

1. Stationarity: For $l = 1, \ldots k$

$$\frac{\partial \mathcal{L}}{\partial x_l} = \frac{\partial f}{\partial x_l} - \sum_i \lambda_i^* \frac{\partial g_i}{\partial x_l} - \sum_j \mu_j^* \frac{\partial h_j}{\partial x_l} = 0$$

2. Primal feasibility:

$$g_i(x^*) = c_i$$

 $h_j(x^*) \le d_j$

- 3. Dual feasibility: $\mu_j^* \ge 0$
- 4. Complementary slackness: $\mu_j^*(h_j(x^*) d_j) = 0$

Complementarity slackness for inequality constraints

We have for each inequality constraint

$$\mu_j^* \geq 0$$
 $\iota_j^*(h_j(x^*)-d_j)=0$

So either the inequality constraint is binding

$$h_j(x^*) = d_j$$

and we have $\mu_j^* \ge 0$.

Or the inequality constraint is NOT binding

$$h_j(x^*) < d_j$$

and we therefore MUST have $\mu_i^* = 0$.

If the inequality constraint is non-binding, we can remove it from the optimisation problem, since it has no effect on the optimal solution.

- 1. The KKT conditions are only **sufficient** for optimality of the solution under certain conditions, e.g. linearity of the problem.
- 2. Since at the optimal solution we have $g_i(x^*) = c_i$ for equality constraints and $\mu_i^*(h_j(x^*) d_j) = 0$, we have

$$\mathcal{L}(x^*,\lambda^*,\mu^*) = f(x^*)$$

Return to simple optimisation problem

We want to find the maximum of this function in the x - y plane

 $\max_{x,y\in\mathbb{R}}f(x,y)=3x$

subject to the following constraints (now with KKT multipliers)

$x + y \leq 4$	\leftrightarrow	μ_1
$-x \leq 0$	\leftrightarrow	μ_2
$-y \leq -1$	\leftrightarrow	μ_3

We know the optimal solution in the **primal variables** $x^* = 3, y^* = 1, f(x^*, y^*) = 9.$

What about the **dual variables** μ_i ?

Since the second constraint is not binding, by complementarity $\mu_2^*(-x^*-0) = 0$ we have $\mu_2^* = 0$. To find μ_1^* and μ_3^* we have to do more work.

We use stationarity for the optimal point:

$$0 = \frac{\partial \mathcal{L}}{\partial x} = \frac{\partial f}{\partial x} - \sum_{i} \lambda_{i}^{*} \frac{\partial g_{i}}{\partial x} - \sum_{j} \mu_{j}^{*} \frac{\partial h_{j}}{\partial x} = 3 - \mu_{1} + \mu_{2}$$
$$0 = \frac{\partial \mathcal{L}}{\partial y} = \frac{\partial f}{\partial y} - \sum_{i} \lambda_{i}^{*} \frac{\partial g_{i}}{\partial y} - \sum_{j} \mu_{j}^{*} \frac{\partial h_{j}}{\partial y} = -\mu_{1} + \mu_{3}$$

From which we find:

$$\mu_1^* = 3 - \mu_2^* = 3$$

 $\mu_3^* = \mu_1^* = 3$

Check interpretation: $\mu_j = \frac{\partial \mathcal{L}}{\partial d_j}$ with $d_j \to d_j + \varepsilon$.

Return to another simple optimisation problem

We want to find the maximum of this function in the x - y - z space

$$\max_{x,y,z\in\mathbb{R}}f(x,y)=3x+5z$$

subject to the following constraints (now with KKT multipliers)

$x + y \leq 4$	\leftrightarrow	μ_1
$-x \leq 0$	\leftrightarrow	μ_2
$-y \leq -1$	\leftrightarrow	μ_3
<i>z</i> = 2	\leftrightarrow	λ

We know the optimal solution in the **primal variables** $x^* = 3, y^* = 1, z^* = 2, f(x^*, y^*, z^*) = 19.$

What about the **dual variables** μ_i , λ ?

We get same solutions to $\mu_1^* = 3$, $\mu_2^* = 0$, $\mu_3^* = 3$ because they're not coupled to z direction. What about λ^* ?

We use stationarity for the optimal point:

$$0 = \frac{\partial \mathcal{L}}{\partial z} = \frac{\partial f}{\partial z} - \sum_{i} \lambda_{i}^{*} \frac{\partial g_{i}}{\partial z} - \sum_{j} \mu_{j}^{*} \frac{\partial h_{j}}{\partial z} = 5 - \lambda^{*}$$

From which we find:

$$\lambda^* = 5$$

Check interpretation: $\lambda_i = \frac{\partial \mathcal{L}}{\partial c_i}$ with $c_i \to c_i + \varepsilon$.