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Optimisation Revision



Optimisation problem

We have an objective function f : Rk → R

max
x

f (x)

[x = (x1, . . . xk)] subject to some constraints within Rk :

gi (x) = ci ↔ λi i = 1, . . . n

hj(x) ≤ dj ↔ µj j = 1, . . .m

λi and µj are the KKT multipliers we introduce for each constraint equation; they measure

the change in the objective value of the optimal solution obtained by relaxing the constraints

(for this reason they are also called shadow prices).
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KKT conditions

The Karush-Kuhn-Tucker (KKT) conditions are necessary conditions that an optimal

solution x∗, µ∗, λ∗ always satisfies (up to some regularity conditions):

1. Stationarity: For l = 1, . . . k

∂L
∂xl

=
∂f

∂xl
−
∑
i

λ∗
i

∂gi
∂xl

−
∑
j

µ∗
j

∂hj
∂xl

= 0

2. Primal feasibility:

gi (x
∗) = ci

hj(x
∗) ≤ dj

3. Dual feasibility: µ∗
j ≥ 0

4. Complementary slackness: µ∗
j (hj(x

∗)− dj) = 0
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min/max and signs

If the problem is a maximisation problem (e.g. welfare maximisation), then µ∗
j ≥ 0 since

µj =
∂L
∂dj

and if we increase dj in the constraint hj(x) ≤ dj , then the feasible space can only get

bigger. Since if X ⊆ X ′

max
x∈X

f (x) ≤ max
x∈X ′

f (x)

then the objective value at the optimum point can only get bigger, and thus µ∗
j ≥ 0. (If

dj → ∞ then the constraint is no longer binding, if dj → −∞ then the feasible space vanishes.)

If however the problem is a minimisation problem (e.g. cost minimisation) then we can use

min
x∈X

f (x) = −max
x∈X

[−f (x)]

We can keep our definition of the Lagrangian and almost all the KKT conditions, but we have

a change of sign µ∗
j ≤ 0, since

min
x∈X

f (x) ≥ min
x∈X ′

f (x)

The λ∗
i also change sign.
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Welfare maximisation revision



KKT and Welfare Maximisation 1/2

Apply KKT now to maximisation of total economic welfare:

max
{db},{gs}

f ({db}, {gs}) =

[∑
b

Ub(db)−
∑
s

Cs(gs)

]
subject to the balance constraint:

g({db}, {gs}) =
∑
b

db −
∑
s

gs = 0 ↔ λ

and any other constraints (e.g. limits on generator capacity, etc.).

Our optimisation variables are {x} = {db} ∪ {gs}.

We get from KKT stationarity at the optimal point:

0 =
∂f

∂db
− λ∗ ∂g

∂db
= U ′

b(d
∗
b )− λ∗ = 0

0 =
∂f

∂gs
− λ∗ ∂g

∂gs
= −C ′

s(g
∗
s ) + λ∗ = 0
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KKT and Welfare Maximisation 2/2

So at the optimal point of maximal total economic welfare we get the same result as if

everyone maximises their own welfare separately based on the price λ∗:

U ′
b(d

∗
b ) = λ∗

C ′
s(g

∗
s ) = λ∗

This is the CENTRAL result of microeconomics.

If we have further inequality constraints that are binding (e.g. capacity constraints), then these

equations will receive additions with µ∗
i > 0.
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Optimise Single Node with

Linear Generation Costs and

Demand Utility



Simplified world: linear generation costs, linear demand utility

We will now turn to a simpler world: all the generator cost functions are linear

Cs(gs) = osgs

and each generator has limited output 0 ≤ gs ≤ Gs . The marginal cost function is a constant

C ′
s(gs) = os .

The quantity Gs and marginal cost os define a supply offer.

All the consumer utility functions are also linear

Ub(db) = vbdb

and each consumer has limited consumption 0 ≤ db ≤ Db. The marginal utility function is a

constant U ′
b(db) = vb.

The quantity Db and marginal utility vb define a demand bid.
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Supply-demand linear example: generator offers

Example from Kirschen and Strbac pages 56-58.

The following generators offer into the market for the hour between 0900 and 1000 on 20th

April 2016:

Company Quantity [MW] Marginal cost [$/MWh]

Red 200 12

Red 50 15

Red 150 20

Green 150 16

Green 50 17

Blue 100 13

Blue 50 18
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Supply-demand linear example: consumer bids

The following consumers make bids for the same period:

Company Quantity [MW] Marginal utility [$/MWh]

Yellow 50 13

Yellow 100 23

Purple 50 11

Purple 150 22

Orange 50 10

Orange 200 25
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Supply-demand example: Curve

If the bids and offers are stacked up in order, the supply and demand curves meet with a

demand of 450 MW at a system marginal price of λ∗ = 16 $/MWh.
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Supply-demand example: Revenue and Expenses

Dispatch and revenue/expense of each company:

Company Production Consumption Revenue Expense

[MWh] [MWh] [$] [$]

Red 250 4000

Blue 100 1600

Green 100 1600

Orange 200 3200

Yellow 100 1600

Purple 150 2400

Total 450 450 7200 7200
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Simplified world: linear generation costs, perfectly inelastic demand

For the analysis of the KKT equations, we will simplify even further.

We consider a single demand bid of volume D so that the demand does not respond to price

changes (i.e. the demand is perfectly inelastic) up to a very high marginal utility v >> os ∀s,
i.e.

U(d) = vd

for d ≤ D.

v is sometimes called the Value Of Lost Load (VOLL).
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Simplify representation of consumers and generators

In this case we get for our welfare maximisation:

max
d,{gs}

[
vd −

∑
s

osgs

]

subject to:

d −
∑
s

gs = 0 ↔ λ

d ≤ D ↔ µ

gs ≤ Gs ↔ µ̄s

−gs ≤ 0 ↔ µ
¯s
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Simplest example: one generator type, perfectly inelastic demand

Suppose all generators have the same marginal cost o and we represent their total dispatch by

g and total capacity by G

max
d,g

[vd − og ]

such that:

d − g = 0 ↔ λ

d ≤ D ↔ µ

g ≤ G ↔ µ̄

−g ≤ 0 ↔ µ
¯
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Simplest example: one generator type, perfectly inelastic demand

If D < G then since v >> o, it will be always be welfare-maximising to dispatch to satisfy the

load, i.e.

g∗ = d∗ = D

If the demand is non-zero then since g∗ > 0 by complementarity we have µ
¯

∗ = 0. Since D < G

then g∗ < G and by complementarity we have µ̄∗ = 0. To compute λ∗ we use stationarity:

0 =
∂L
∂g

=
∂f

∂g
−
∑
i

λ∗
i

∂gi
∂g

−
∑
j

µ∗
j

∂hj
∂g

= −o + λ∗ − µ̄∗ + µ
¯

∗

Thus λ∗ = o, which is the cost per unit of supplying extra demand. The generator sets the

price. There is no generator short-term profit and a large consumer surplus.

For the load µ∗ can be non-zero because d∗ = D:

0 =
∂L
∂d

=
∂f

∂d
−
∑
i

λ∗
i

∂gi
∂d

−
∑
j

µ∗
j

∂hj
∂d

= v − λ∗ − µ∗

µ∗ = v − λ∗ is the marginal benefit of each increase in demand.
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Simplest example: one generator type, perfectly inelastic demand

For the case D < G :

0 g * = d * = D G
Electricity amount [MW]

0

o

v

Co
st

 [
/M

W
h]

generator costs

consumer surplus

* = o

* = v *

16



Simplest example: one generator type, perfectly inelastic demand

If D > G then the generator will dispatch up to its maximum capacity

g∗ = d∗ = G

For its lower limit we have µ
¯

∗ = 0. From stationarity:

0 =
∂L
∂g

=
∂f

∂g
−
∑
i

λ∗
i

∂gi
∂g

−
∑
j

µ∗
j

∂hj
∂g

= −o + λ∗ − µ̄∗ + µ
¯

∗

Thus λ∗ = o + µ̄∗. To find λ∗ we have to look at the demand:

0 =
∂L
∂d

=
∂f

∂d
−
∑
i

λ∗
i

∂gi
∂d

−
∑
j

µ∗
j

∂hj
∂d

= v − λ∗ − µ∗

Since d∗ < D, µ∗ = 0, λ∗ = v and thus µ̄∗ = v − o, which is the marginal benefit of increasing

the generator capacity G . The demand sets the price. There is no consumer surplus and the

generator makes a large profit. µ̄∗ is the inframarginal rent, i.e. the difference between the

market price and the generator’s marginal cost. It is also know as the contribution margin

towards paying the fixed costs of the generator.
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Simplest example: one generator type, perfectly inelastic demand

For the case D > G :

0 g * = d * = G D
Electricity amount [MW]

0

o

v

Co
st

 [
/M

W
h]

generator costs

generator profit

* = v

* = v o
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Next simplest example: several generators, fixed demand

Suppose we have several generators with dispatch gs and strictly ordered operating costs os
such that os < os+1. We now maximise

max
{d,gs}

[
vd −

∑
s

osgs

]

such that

d −
∑
s

gs = 0 ↔ λ

d ≤ D ↔ µ

gs ≤ Gs ↔ µ̄s

−gs ≤ 0 ↔ µ
¯s
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Next simplest example: several generators, fixed demand

Stationarity gives us for each generator gs :

0 =
∂L
∂gs

= −os + λ∗ − µ̄∗
s + µ

¯

∗
s

and from complementarity we get

µ̄s(g
∗
s − Gs) = 0 µ

¯s
g∗
s = 0

We can see by inspection that we will dispatch the cheapest generation first. Suppose that we

have enough generation for the demand, i.e. D <
∑

s Gs . [If D >
∑

s Gs we have the same

situation as for a single generator, i.e. λ∗ = v , so that the demand sets the price.]

Find the generator m on the margin where the supply curve intersects with the demand D, i.e.

the m where
∑m−1

s=1 Gs < D <
∑m

s=1 Gs .

For s ≤ m − 1 we have g∗
s = Gs , µ

¯

∗
s
= 0, µ̄∗

s = λ∗ − os . µ̄
∗
s are the inframarginal rents.

For s = m we have g∗
m = D −

∑m−1
s=1 Gs to cover what’s left of the demand. Since

0 < g∗
m < Gm we have µ

¯

∗
m
= µ̄∗

m = 0 and thus λ∗ = om.
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Next simplest example: several generators, fixed demand

Specific example of two generators with G1 = 300 MW, G2 = 400 MW, o1 = 10 e/MWh,

o2 = 30 e/MWh and D = 500 MW.

In this case m = 2, g∗
1 = G1 = 300 MW, g∗

2 = d − G1 = 200 MW, λ∗ = o2, µ
¯i

= 0, µ̄2 = 0

and µ̄1 = o2 − o1.
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From welfare maximisation to cost minimisation

For the case D >
∑

s Gs we can instead imagine that the demand is rigidly fixed to D and that

instead we have a dummy generator with dispatch gd = D −
∑

s Gs that represents load

shedding. In this case we can substitute d = D − gd to get

max
{gd ,gs}

[
vD − vgd −

∑
s

osgs

]
such that

D − gd −
∑
s

gs = 0 ↔ λ

gs ≤ Gs ↔ µ̄s

−gs ≤ 0 ↔ µ
¯s

Since vD is a constant, we can use maxx∈X [−f (x)] = −minx∈X f (x) to recast this as a

minimisation of the total generator costs, absorbing gd into the set {gs}. The constant vD is

dropped.
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From welfare maximisation to cost minimisation

We have turned the maximisation of total welfare into cost minimisation:

min
{gs}

∑
s

osgs

such that: ∑
s

gs − d = 0 ↔ λ

gs ≤ Gs ↔ µ̄s

−gs ≤ 0 ↔ µ
¯s

The most expensive generator has os = v and Gs = ∞ and represents load shedding.

We’ve replaced the symbol D with d for simplicity going forward (d is now a constant).

NB: Because the signs of the KKT multipliers change when we go from maximisation to

minimisation, we’ve also changed the sign of the balance constraint to keep the marginal price

λ positive.
23



Optimise nodes in a network



Welfare optimisation for several nodes in a network

Now let’s suppose we have several nodes i with different loads and different generators, with

flows fℓ in the network lines ℓ.

Now we have additional optimisation variables fℓ AND additional constraints for welfare

maximisation:

max
{di,b},{gi,s},{fℓ}

∑
i,b

Ui,b(di,b)−
∑
i,s

Ci,s(gi,s)


such that demand is met either by generation or by the network at each node i∑

b

di,b −
∑
s

gi,s +
∑
ℓ

Kiℓfℓ = 0 ↔ λi

Note there is now a market price for each node. As before, generator constraints are satisified

gi,s ≤ Gi,s ↔ µ̄i,s

−gi,s ≤ 0 ↔ µ
¯i,s
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Linear cost minimisation at several nodes in a network

For cost minimisation we have a fixed load di at each node, and absorb load-shedding above a

value v into a dummy generator.

Now we minimise over fℓ and gi,s for the case of linear cost functions:

min
{gi,s},{fℓ}

∑
i,s

oi,sgi,s

such that demand is met either by generation or by the network at each node i∑
s

gi,s − di =
∑
ℓ

Kiℓfℓ ↔ λi

and generator constraints are satisified

gi,s ≤ Gi,s ↔ µ̄i,s

−gi,s ≤ 0 ↔ µ
¯i,s
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Several generators at different nodes in a network

In addition we have constraints on the line flows.

First, they have to satisfy Kirchoff’s Voltage Law around each closed cycle c :∑
c

Cℓcxℓfℓ = 0 ↔ λc

and in addition the flows cannot overload the thermal limits, |fℓ| ≤ Fℓ

fℓ ≤ Fℓ ↔ µ̄ℓ

−fℓ ≤ Fℓ ↔ µ
¯ℓ
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Simplest example: two nodes connected by a single line

At node 1 we have demand of d1 = 100 MW and a generator with costs o1 = 10 e/MWh and

a capacity of G1 = 300 MW.

At node 2 we have demand of d2 = 100 MW and a generator with costs o2 = 20 e/MWh and

a capacity of G2 = 300 MW.

What happens if the capacity of the line connecting them is F = 0?

What about F = 50 MW?

What about F = ∞?
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Simplest example: two nodes connected by a single line

1

|f | ≤ F

2

d1 g1 d2 g2

g1 − d1 = f ↔ λ1

d1 = 100 MW

G1 = 300 MW

o1 = 10 e/MWh

g2 − d2 = −f ↔ λ2

d2 = 100 MW

G2 = 300 MW

o2 = 20 e/MWh
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Simplest example: two nodes connected by a single line

Out optimisation problem has objective function:

min
g1,g2,f

[o1g1 + o2g2]

subject to the following constraints:

g1 − d1 = f ↔ λ1

g2 − d2 = −f ↔ λ2

g1 ≤ G1 ↔ µ̄1

−g1 ≤ 0 ↔ µ
¯1

g2 ≤ G2 ↔ µ̄2

−g2 ≤ 0 ↔ µ
¯2

f ≤ F ↔ µ̄

−f ≤ F ↔ µ
¯
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Two nodes: Case F = 0

For the case F = 0 the nodes are like two separated islands, f ∗ = 0.

The generator on each island provides the demand separately, so:

g∗
1 = d1 and g∗

2 = d2

Neither generator has any binding constraints, since in each case the demand (100 MW) is less

than the generator capacity (300 MW), so

µ̄∗
1 = µ

¯

∗
1
= µ̄∗

2 = µ
¯

∗
2
= 0

From stationarity for each site we get

0 =
∂L
∂gi

= oi − λ∗
i − µ̄∗

i + µ
¯

∗
i

Thus we have at each site λ∗
i = oi , as if we had optimised the nodes separately.
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Two nodes: Case F = 50 MW

For the case F =50 MW the cheaper node 1 will export to the more expensive node 2 as much

as the restricted capacity F allows:

f ∗ = F = 50 MW

Generator 1 covers 50 MW of the demand from node 2:

g∗
1 = d1 + f ∗ = 150 MW and g∗

2 = d2 − f ∗ = 50 MW

Neither generator has any binding constraints, so

µ̄∗
1 = µ

¯

∗
1
= µ̄∗

2 = µ
¯

∗
2
= 0

and thus we have again different prices at each λ∗
i = oi . For the flow:

0 =
∂L
∂f

= 0 + λ∗
1 − λ∗

2 − µ̄∗ + µ
¯

∗

Only the upper limit is binding, so we get µ
¯

∗ = 0 and µ̄∗ = λ∗
1 − λ∗

2 = o1 − o2 = −10 e/MWh.

µ̄∗ is the cost reduction if we expand the transmission capacity F by ε, allowing us to

substitute some of the expensive generation at node 2 with cheap generation from node 1. 31



Two nodes: Case F = ∞

For the case F = ∞ we have unrestricted capacity, so it is like merging the two nodes to one

node. Now all the demand is covered by the cheapest node:

f ∗ = d2 = 100 MW

Generator 1 covers all the demand:

g∗
1 = d1 + d2 = 200 MW and g∗

2 = 0

Only generator 2 has a non-zero KKT multiplier, so at node 1 we have λ∗
1 = o1 and at node 2

we have:

µ
¯

∗
2
= λ∗

2 − o2

From KKT for the flow f we have no constraints so µ̄∗ = µ
¯

∗ = 0 and from stationarity

0 =
∂L
∂f

= 0 + λ∗
1 − λ∗

2 − µ̄∗ + µ
¯

∗

i.e. λ∗
1 = λ∗

2 . We have price equalisation, as if it were a single node.
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Two node: demand payments versus generation revenue

Now let’s compare for our examples what each demand pays λ∗
i di and what each generator

receives as revenue λ∗
i g

∗
i from each market.

Case λ∗
1 λ∗

2 λ∗
1d1 λ∗

2d2
∑

i λ
∗
i di λ∗

1g
∗
1 λ∗

2g
∗
2

∑
i λ

∗
i g

∗
i

[e/MWh] [e/MWh] [e/h] [e/h] [e/h] [e/h] [e/h] [e/h]

F = 0 10 20 1000 2000 3000 1000 2000 3000

F = 50 10 20 1000 2000 3000 1500 1000 2500

F = ∞ 10 10 1000 1000 2000 2000 0 2000

NB: In the case with F = 50, total demand payments are 3000 e/h, whereas the generators

are only receiving 2500 e/h.

Where is the missing money (500 e/h) going?

Answer: to the network operator for service of doing arbitrage, buying low and selling high.
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Congestion rent

Due to the congestion of the transmission line, the marginal cost of producing electricity can

be different at node 1 and node 2. The competitive price at node 2 is higher than at node 1 –

this corresponds to locational marginal pricing, or nodal pricing.

Since consumers pay and generators get paid the price in their local market, in case of

congestion there is a difference between the total payment of consumers and the total revenue

of producers – this is the merchandising surplus or congestion rent, collected by the network

operator. For each line it is given by the price difference in both regions times the amount of

power flow between them:

Congestion rent = ∆λ× f
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Congestion rent: Two node example

Returning to our two node example:

Case Demand pays Generator gets λ∗
2 − λ∗

1 flow f Cong. rent

[e/h] [e/h] [e/MWh] [MW] [e/h]

F = 0 3000 3000 10 0 0

F = 50 3000 2500 10 50 500

F = ∞ 2000 2000 0 100 0

To get a congestion rent, we need congestion somewhere in the network to cause a price

difference between the nodes, as well as a non-zero flow between the nodes.
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Congestion rent

In this example we saw that the sum of what consumers pay does not always equal the sum of

generator revenue.

In fact if we take the balance constraint and sum it weighted by the market price at each node

we find ∑
i

λ∗
i di −

∑
i

λ∗
i

∑
s

g∗
i,s = −

∑
i

λ∗
i

∑
ℓ

Kiℓf
∗
ℓ

The quantity for each ℓ

−f ∗ℓ
∑
i

Kiℓλ
∗
i = fℓ(λ

∗
end − λ∗

start)

is called the congestion rent and is the money the network operator receives for transferring

power from a low price node (start) to a high price node (end), ‘buy it low, sell it high’.

It is zero if: a) the flow is zero or b) the price difference is zero.
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Two nodes, quadratic cost function

min
g1,g2,f

[C1(g1) + C2(g2)]

1

f ≤ F ↔ µ̄ − f ≤ F ↔ µ
¯

2

d1 = 500 g1

C ′
1(g1) = 10 + 0.01g1

g1 − d1 = f ↔ λ1

d2 = 1500 g2

C ′
2(g2) = 13 + 0.02g2

g2 − d2 = −f ↔ λ2
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Two nodes, quadratic cost function

From stationarity

0 =
∂L
∂g1

= C ′
1(g

∗
1 )− λ∗

1

0 =
∂L
∂g2

= C ′
2(g

∗
2 )− λ∗

2

0 =
∂L
∂f

= 0 + λ∗
1 − λ∗

2 − µ̄∗ + µ
¯

∗
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Outcome with no transmission capacity F = 0

F = 0, f ∗ = 0, g∗
1 = 500, g∗

2 = 1500, λ∗
1 = 15, λ∗

2 = 43, µ
¯

∗ = 0, µ̄∗ = λ∗
1 − λ∗

2 = −28
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Outcome with unlimited transmission capacity F = ∞

F = ∞, f ∗ = 933, g∗
1 = 1433, g∗

2 = 567, λ∗
1 = λ∗

2 = 24.33, µ
¯

∗ = µ̄∗ = 0
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Outcome with constrained transmission capacity F = 400

F = 400, f ∗ = 400, g∗
1 = 900, g∗

2 = 1100, λ∗
1 = 19, λ∗

2 = 35, µ
¯

∗ = 0, µ̄∗ = λ∗
1 − λ∗

2 = −16
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Comparison

Separate markets Single market Constrained market

d1 [MW] 500 500 500

g∗
1 [MW] 500 1433 900

λ∗
1 [e/MWh] 15 24.33 19

d2 [MW] 1500 1500 1500

g∗
2 [MW] 1500 567 1100

λ∗
2 [e/MWh] 43 24.33 35

f ∗ [MW] 0 933 400

µ
¯

∗ [e/MWh] 0 0 0

µ̄∗ [e/MWh] -28 0 -16∑
s λs × gs [e] 72000 48660 55600∑
s λs × ds [e] 72000 48660 62000

congestion rent 0 0 6400
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Advanced: 3-node example



PTDF formulation of linearised optimal power flow

For the 3-node example it is easier to switch to the Power Transfer Distribution Factors

(PTDF) formulation of the power flow fℓ =
∑

k PTDFℓkpk . Keep our objective

min
{gi,s},{fℓ}

∑
i,s

oi,sgi,s

and the same generator constraints and line constraints:

fℓ ≤ Fℓ ↔ µ̄ℓ

−fℓ ≤ Fℓ ↔ µ
¯ℓ

but instead of energy conservation at each node and cycle constraints we have:

fℓ =
∑
k

PTDFℓkpk =
∑
k

PTDFℓk

(∑
s

gk,s − dk

)
and one overall conservation constraint:∑

i

pi =
∑
i

(∑
s

gi,s − di

)
= 0
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An example 3-node system

The cheapest generators are are at node 1, most demand is at node 3.

∑
i di = 410 MW

Generator Capacity Marginal cost

(MW) (e/MWh)

A 140 7.5

B 285 6

C 90 14

D 85 10

Line Reactance Capacity

(p.u.) (MW)

1 → 2 0.2 126

1 → 3 0.2 250

2 → 3 0.1 130
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Power flows and feasible injections

PTDF =

1 → 2

1 → 3

2 → 3

2/5 −1/5 0

3/5 1/5 0

2/5 4/5 0


Power flows:

f1→2 =
1

5
(2p1 − p2)

f1→3 =
1

5
(3p1 + p2)

f2→3 =
2

5
(p1 + 2p2)

Implications of six constraints |fℓ| ≤ Fℓ on p1
and p2 (p3 is not independent since

∑
i pi = 0;

graphic Zi is pi ): feasible space is rectangle.
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Economic dispatch (ignore grid)

If we ignore the grid constraints, we dispatch the cheapest generators first, market price set by

marginal generator A: λ = oA = 7.5 e/MWh.

gA = 125 MW

gB = 285 MW

gC = gD = 0

400 200 0 200 400

Z1

300

200

100

0

100

200

300

Z
2

p1 = 360 MW, p2 = −60 MW.

F1→2 = 126 MW

F1→3 = 250 MW

F2→3 = 130 MW

f1→2 =
1

5
(2p1 − p2) = 156 MW

f1→3 =
1

5
(3p1 + p2) = 204 MW

f2→3 =
2

5
(p1 + 2p2) = 96 MW

First line limit is violated! Optimal point (black

dot) is outside the red feasible space. 46



Economic redispatch: problem

What can we do? Transfer x MW from generator A at node 1 to generator D at node 3 to

relieve the line.

gA = 125 → gA = 125− x

gD = 0 → gD = x

400 200 0 200 400

Z1

300

200

100

0

100

200

300

Z
2

p1 = 360− x , p2 = −60.

F1→2 = 126

F1→3 = 250

F2→3 = 130

f1→2 =
1

5
(2(p1 − x)− p2) = 156− 2

5
x = 126

f1→3 =
1

5
(3p1 + p2) = 159

f2→3 =
2

5
(p1 + 2p2) = 66

Solution? 2
5x = 30, i.e. x = 75.
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Economic redispatch: solution

Solution with x = 75 MW transfer from generator A at node 1 to generator D at node 3 to

relieve the line f1→2.

gA = 125 → gA = 125− x = 50

gD = 0 → gD = x = 75

Redispatch cost: 187.5 e/h
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p1 = 360− x = 285, p2 = −60.

F1→2 = 126

F1→3 = 250

F2→3 = 130

f1→2 =
1

5
(2p1 − p2) = 126

f1→3 =
1

5
(3p1 + p2) = 159

f2→3 =
2

5
(p1 + 2p2) = 66
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Nodal prices

The nodal marginal price is equal to the minimal system cost of supplying an additional

megawatt of load at this node.

For node 1, there is a cheap generator A to locally supply the demand, so λ1 = oA = 7.5.

For node 3, it cannot be supplied from node 1 because of the transmission constraint on f1→2,

so it must be supplied locally λ3 = oD = 10.

What about node 2? We cannot supply from node 1, node 2’s generator C is expensive, so

what about from node 3? Suppose we increase demand by ε, i.e. p2 → p2 − ε. Because of the

binding transmission constraint f1→2 =
1
5 (2p1 − p2) = 126 we need to compensate by

decreasing p1 → p1 − 1
2ε. This means we need to increase generator D and p3 → p3 +

3
2ε so

we get

λ2 = 1.5oD − 0.5oA = 11.25

NB: This price is a composite, not the marginal price of any generator!
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Nodal prices

Economic operation of the three-node system using nodal pricing.

Node 1 Node 2 Node 3 System

Consumption (MW) 50 60 300 410

Production (MW) 335 0 75 410

Nodal marginal price (e/MWh) 7.5 11.25 10 -

Consumer payments (e/h) 375 675 3000 4050

Generator revenue (e/h) 2512.5 0 750 3262.5

Congestion rent (e/h) 787.5
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Nodal prices

Congestion rent:

Connection Flow ’From’ price ’To’ price Surplus

(MW) (e/MWh) (e/MWh) (e/h)

1 → 2 126 7.5 11.25 427.5

1 → 3 159 7.5 10 397.5

2 → 3 66 11.25 10 -82.5

Total 787.5

Note the counter-intuitive flow from node 2 (higher price) to node 3 (lower price)! This is

because of grid constraints from KVL.

Note also that the line itself does not have to be congested to have a congestion rent (see e.g.

line 1 → 3). It suffices that somewhere in the network there is congestion (here: 1 → 2).
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Example slightly changed

The nodal marginal price is equal to the minimal system cost of supplying an additional

megawatt of load at this node.

gA = 47.5 MW

gB = 285 MW

gC = 0 MW

gD = 77.5 MW

Nodal prices:

λ1 = oA = 7.5 e/MWh

λ3 = oD = 10 e/MWh

λ2 = 2× oA − 1× oD = 5 e/MWh

F1→2 = 126 MW

F1→3 = 250 MW

F2→3 = 65 MW

f1→2 =
1

5
(2p1 − p2) = 125 MW

f1→3 =
1

5
(3p1 + p2) = 157.5 MW

f2→3 =
2

5
(p1 + 2p2) = 65 MW

The nodal marginal price at node 2 is lower than the marginal cost of any generator!
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Negative nodal prices

Generator A has marginal costs 60e/MWh, generator B has marginal costs 30e/MWh. The

line between E and D is constrained to 25 MW.

The additional load of 10 MW at node E allows cheap generator B to substitute some of

expensive generator A and thus reduces the system cost by 300 e/h, so λE = −30 e/MWh!
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Nodal prices for Germany

Spot the node with negative price. If we increase the load here, it will relieve a line somewhere

that allows more flow from a cheap node to an expensive node, thus reducing the system cost.

54Source: PyPSA

(Python for Power System Analysis)



The European Market



Existing bidding zones

• Bids for German electricity take place in a giant

bidding zone encompassing both Germany and

Luxembourg (Austria was separated from the

German bidding zone in October 2018)

• This means that transmission constraints are only

visible to the market at the borders to the other

national zones

• Internal transmission constraints are ignored -

market bids are handled as if they do not exist

• Only KCL enforced on most borders - KVL much

harder
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The Problem

Renewables are not always located near demand centres, as in this example from Germany.
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The Problem

• This leads to overloaded lines in

the middle of Germany, which

cannot transport all the wind

energy from North Germany to the

load in South Germany

• It also overloads lines in

neighbouring countries due to loop

flows (unplanned physical flows

‘according to least resistance’ which

do not correspond to traded flows)

• It also blocks imports and

exports with neighbouring

countries, e.g. Denmark
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Solution 1: Redispatch after energy market clearing

These problems are not visible in the day-ahead electricity market, which treats the whole of

Germany and Austria as a single bidding zone. It dispatches wind in North Germany as if there

was no internal congestion...

To ensure that the physical limits of transmission are not exceeded, the network operator must

‘re-dispatch’ power stations and curtail (Einspeisemanagement) renewables to restore order.

This is costly (0.8 redispatch + 0.6 RE-compensation = 1.4 billion EUR in 2017 - although

exceptional circumstances in 1st quarter) and results in lost CO2-free generation (5.5 TWh

curtailment of RE and CHP in 2017).

International redispatch is sometimes also required (Multilateral Remedial Actions = MRA).

Furthermore, there are no market incentives to reinforce the North-South grid, to locate more

power stations in South Germany or to build storage / P2X in North Germany.
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Redispatch in Germany: Trend

59
Source: Xiong et al (2021)

https://doi.org/10.1016/j.apenergy.2020.116201


Redispatch in Europe: Future

The Joint Research Centre (JRC) of the European Commission calculates rising redispatch if

the existing bidding zone configuration is kept.
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Source: Thomassen et al, 2024

https://publications.jrc.ec.europa.eu/repository/handle/JRC137685


Solution 2: Smaller bidding zones to “see” congested boundaries

• In Scandinavia they have

solved this by introducing

smaller bidding zones

• Now congestion at the

boundaries between zones is

taken into account in the

implicit auctions of the

market

• This is also done in Italy

(again, a long country),

where prices for small

consumers are uniformised

for fairness
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Solution 3: Nodal pricing

• The ultimate solution, as

used in the US and other

markets, is nodal pricing,

which exposes all

transmission congestion

• Considered too complex and

subject to market power to

be used in Europe, but this

is questionable...

• Here we see clearly why

many argue for a

North-South German split
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First step: Split Germany North-South

• Initial price difference could average

up to 12 EUR/MWh

• Prices would converge with more

network expansion

• Redispatch costs reduced by 39% in

2025, 58% in 2035 (assuming NEP

2030 transmission projects get

built)

• Politically difficult, may require, like

Italy, uniformised price on consumer

side
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Source: Fraunholz & Hladik, 2018

https://www.strommarkttreffen.org/2018-02_Fraunholz&Hladik_Zwei_Preiszonen_in_D.pdf


Solution 1.5: Flow-based market coupling

Flow-based market coupling can be used in zonal markets to see precise individual line

constraints via PTDF, instead of “boxing” the feasible space like ATC/NTC schemes do.
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Source: Van den Bergh, Boury, Delarue



Solution 1.5: Flow-based market coupling

• From May 2015 to June 2022 flow-based

market coupling was only applied in

Germany, France, Netherlands, Belgium

and Luxembourg

• From June 2022 it has extended across

northern ‘Core’ countries in continental

Europe
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Source: JAO Core FBMC

https://www.jao.eu/core-fb-mc


Storage Optimisation



Storage equations

Now, like the network case where we add different nodes i with different loads, for storage we

have to consider different time periods t. This is called multi-period optimisation.

Label conventional generators by s, storage by r and now minimise

min
{gi,s,t},{gi,r,t,charge},{gi,r,t,discharge},{fℓ,t}∑
i,s,t

oi,sgi,s,t +
∑
i,r ,t

oi,r ,charge gi,r ,t,charge +
∑
i,r ,t

oi,r ,discharge gi,r ,t,discharge


The power balance constraints are now (cf. Lecture 5) for each node i and time t that the

demand is met either by generation, storage or network flows:∑
s

gi,s,t +
∑
r

(gi,r ,t,discharge − gi,r ,t,charge)− di,t =
∑
ℓ

Kiℓfℓ,t ↔ λi,t

Now we have a market price λi,t for each node i and time t.
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Storage equations

We have constraints on normal generators

0 ≤ gi,s,t ≤ Gi,s ↔ µi,s,t

and on the storage

0 ≤ gi,r ,t,discharge ≤ Gi,r ,discharge ↔ µi,r ,t,discharge

0 ≤ gi,r ,t,charge ≤ Gi,r ,charge ↔ µi,r ,t,charge

The energy level of the storage (or ‘state of charge’) is given by

ei,r ,t = η0ei,r ,t−1 + η1gi,r ,t,charge − η−1
2 gi,r ,t,discharge ↔ λ̃i,r ,t

The KKT multiplier λ̃i,r ,t is the value of the storage medium at this time. The storage state

of charge is limited by its energy capacity Ei,r

0 ≤ ei,r ,t ≤ Ei,r ↔ µi,r ,t
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Idea of storage

Storage does ‘buy it low, sell it high’ arbitrage, like network, but in time rather than space, i.e.

between cheap times (e.g. with lots of zero-marginal-cost renewables) and expensive times

(e.g. with high demand, low renewables and expensive conventional generators).
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Storage charges at low prices, discharges at high prices

Simplified example from https://model.energy For Germany with only wind and hydrogen

storage to meet a flat 100 MW demand.

Average charging price (with electrolyser): 43 e/MWh

Average discharging price (with turbine): 144 e/MWh
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Relation of storage bidding to storage medium value

The KKT stationarity for the discharge variable gt,discharge (ignoring i , r indices for now) is

0 =
∂L

∂gt,discharge
= η−1

2 λ̃∗
t − λ∗

t + µ
¯

∗
t,discharge

− µ̄∗
t,discharge ∀t

Note that this has exactly the same structure as a conventional generator with marginal cost

os = η−1
2 λ̃∗

t based on a fuel cost λ̃∗
t . So the storage medium value (sometimes called Belman

value or marginal storage value) sets how the storage bids into the electricity market.

Doing the same for the the charge variable gt,charge we get from stationarity

0 =
∂L

∂gt,charge
= −η1λ̃

∗
t + λ∗

t + µ
¯

∗
t,charge

− µ̄∗
t,charge ∀t

Note that this has exactly the same structure as a flexible demand bidding with a willingness to

pay of η1λ̃
∗
t . The charger is willing to pay up to η1λ̃

∗
t for electricity because if it wants to

produce 1 MWh of storage, it needs 1/η1 MWh of electricity. If it pays η1λ̃
∗
t e/MWh or less

for 1/η1 MWh it will pay up to λ∗
t and still can make a profit charging the storage medium.

In the model.energy example the storage value λ̃∗
t for hydrogen storage is the hydrogen price.
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Relation of storage bidding to storage medium value

For a hydro dam the marginal storage value λ̃∗
t is the value of the water: the opportunity cost

of using up water that could be used to generate at later times with high electricity prices.

71
Source: Wikipedia



Storage plus network equations

Finally for the flows we repeat the constraints for each time t.

We have KVL for each cycle c and time t∑
ℓ

Cℓcxℓfℓ,t = 0 ↔ λc,t

and in addition the flows cannot overload the thermal limits, |fℓ,t | ≤ Fℓ

fℓ,t ≤ Fℓ ↔ µ̄ℓ,t

−fℓ,t ≤ Fℓ ↔ µ
¯ℓ,t
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Preview: Investment optimisation

Preview for next time:

Next time we will also optimise investment in the capacities of generators, storage and

network lines, to maximise long-run efficiency.

We will promote the capacities Gi,s , Gi,r ,∗, Ei,r and Fℓ to optimisation variables.
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