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Introduction to Electricity

Markets



The Economic Operation of the Electricity Sector

Given the many different ways of consuming and generating electricity:

• What is the most efficient way to deploy consuming and generating assets in the

short-run?

• How should we invest in assets in the long-run to maximise economic welfare?

The operation of electricity markets is intimately related to optimisation.

In the past and still in many countries today, electricity was provided centrally by

‘vertically-integrated’ monopoly utilities that owned generating assets, the electricity networks

and retailing. Given that these utilities owned all the infrastructure, it was hard for third-party

generators to compete, even if they were allowed to.

From the 1980s onwards, countries began to liberalise their electricity sectors, separating

generation from transmission, and allowing regulated competition for generation in electricity

markets.
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Electricity Markets

Electricity markets have several important differences compared to other commodity markets.

At every instant in time, consumption must be balanced with generation.

If you throw a switch to turn on a light, somewhere a generator will be increasing its output to

compensate.

If the power is not balanced in the grid, the power supply will collapse and there will be

blackouts.

It is not possible to run an electricity market for every single second, for practical reasons (the

network must be checked for stability, etc.).

So electricity is traded in blocks of time, e.g. hourly, 14:00-15:00, or quarter-hourly,

14:00-14:15, well in advance of the time when it is actually consumed (based on forecasts).

Additional markets trade in backup balancing power, which step in if the forecasts are wrong.
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Baseload versus Peaking Plant

Load (= Electrical Demand) is low during night; in Northern Europe in the winter, the peak is

in the evening. To meet this load profile, baseload generation with low fuel and running costs

runs the whole time; more expensive peaking plant covers the difference.
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Effect of varying demand for fixed generation
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Example market 1/3
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Example market 2/3
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Example market 3/3
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Effect of varying renewables: fixed demand, no wind
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Effect of varying renewables: fixed demand, 35 GW wind
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Spot market price development

As a result of so much zero-marginal-cost renewable feed-in, spot market prices steadily

decreased until 2016. This is called the Merit Order Effect. Since then prices have been

rising due to rising gas and CO2 prices.
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Merit Order Effect

To summarise:

• Renewables have zero marginal cost

• As a result they enter at the bottom of the merit order, reducing the price at which the

market clears

• This pushes non-CHP gas and hard coal out of the market

• This is unfortunate, because among the fossil fuels, gas is the most flexible and produces

lower CO2 per MWhel than e.g. lignite

• It also reduces the profits that nuclear and lignite make

• Will there be enough backup power plants for times with no wind/solar?

This has led to lots of political tension, but has been counteracted in recent years by the rising

CO2 price.
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Optimisation Revision



Optimisation problem

We have an objective function f : Rk → R

max
x

f (x)

[x = (x1, . . . xk)] subject to some constraints within Rk :

gi (x) = ci ↔ λi i = 1, . . . n

hj(x) ≤ dj ↔ µj j = 1, . . .m

λi and µj are the KKT multipliers we introduce for each constraint equation; they measure

the change in the objective value of the optimal solution obtained by relaxing the constraints

(for this reason they are also called shadow prices).
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KKT conditions

The Karush-Kuhn-Tucker (KKT) conditions are necessary conditions that an optimal

solution x∗, µ∗, λ∗ always satisfies (up to some regularity conditions):

1. Stationarity: For l = 1, . . . k

∂L
∂xl

=
∂f

∂xl
−
∑
i

λ∗
i

∂gi
∂xl

−
∑
j

µ∗
j

∂hj
∂xl

= 0

2. Primal feasibility:

gi (x
∗) = ci

hj(x
∗) ≤ dj

3. Dual feasibility: µ∗
j ≥ 0

4. Complementary slackness: µ∗
j (hj(x

∗)− dj) = 0
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Interpretation of the KKT multipliers

If say dj → dj + ε then

f (x∗) → f (x∗) + µ∗
j ε

and similarly for ci → ci + ε and λ∗
i .

We will now sketch a proof of this (not in exam). The Lagrangian from last time was defined:

L(x , λ, µ) = f (x)−
∑
i

λi [gi (x)− ci ]−
∑
j

µj [hj(x)− dj ]

Note that by primal feasibility and complementary slackness at the optimum point x∗, µ∗, λ∗:

L(x∗, λ∗, µ∗) = f (x∗)

Now consider the Lagrangian Lε for the perturbed problem dj → dj + ε:

Lε(x , λ, µ) = L(x , λ, µ) + µjε
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Interpretation of the KKT multipliers

At the optimum point of the perturbed problem x+, µ+, λ+ we have:

f (x+) = Lε(x+, λ+, µ+) = L(x+, λ+, µ+) + µ+
j ε

Because everything is differentiable and we only have a small perturbation, we expect that

y+ = (x+, µ+, λ+) is close to y∗ = (x∗, µ∗, λ∗) and Taylor expand about this point:

L(x+, λ+, µ+) ≈ L(x∗, λ∗, µ∗)+
∑
l

(x+l −x∗l )
∂L
∂xl

∣∣∣
y=y∗

+
∑
i

(λ+
i −λ∗

i )
∂L
∂λi

∣∣∣
y=y∗

+
∑
j

(µ+
j −µ∗

j )
∂L
∂µj

∣∣∣
y=y∗

From stationarity for the original problem we know that ∂L
∂xl

∣∣∣
y=y∗

= ∂L
∂λi

∣∣∣
y=y∗

= 0.

∂L
∂µj

∣∣∣
y=y∗

= 0 for binding inequalities, and for non-binding inequalities µ∗
j = µ+

j = 0. Thus

f (x+) = L(x+, λ+, µ+) + µ+
j ε ≈ L(x∗, λ∗, µ∗) + µ∗

j ε = f (x∗) + µ∗
j ε
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Electricity Markets from

Perspective of Single Generators

and Consumers



Efficient Markets for the short-run

Assume investments already made in generators and and consumption assets (factories,

machines, etc.) ⇒ all capacities are fixed.

Assume all actors are price takers (i.e. nobody can exercise market power) and we have

perfect competition. Conditions for this: many producers and consumers; all goods are

homogeneous; transparent information; no entry/exit barriers.

How do we allocate production and consumption of existing assets in most efficient way?

I.e. we are interested in the short-run “static” efficiency.

(In contrast to long-run “dynamic” efficiency where we also consider optimal investment in

assets.)
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Single Generator: Cost Function

Consider now the market from the point of view of a single generator.

A generator has a cost or supply function C (g) in e/h, which gives the total costs (fuel,

operation and maintenance costs) for a given rate of electricity generation g MW.

Typically the generator has a higher cost for a higher rate of generation g , i.e. the first

derivative is positive C ′(g) > 0. For most generators the rate at which cost increases with rate

of production itself increases as the rate of production increases, i.e. C ′′(g) > 0.
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Cost Function: Example

A gas generator has a cost function which depends on the rate of electricity generation g [e/h]

according to

C (g) = 0.005 g2 + 9.3 g + 120
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Note that the slope is always positive and becomes more positive for increasing g . The curve

does not start at the origin because of startup costs, no load costs, etc. 19



Optimal generator behaviour

We assume that the generator is a price-taker, i.e. they cannot influence the price by changing

the amount they generate. Suppose the market price is λ e/MWh. For a generation rate g ,

the revenue from the market is λg and the generator should adjust their generation rate g to

maximise their net generation surplus, i.e. their short-term profit:

max
g

[λg − C (g)]

This optimisation problem is optimised for g = g∗ where by KKT stationarity we have

0 =
∂L
∂g

=
∂f

∂g
= λ− dC

dg
(g∗)

We’ll write the derivative with a prime to get:

C ′(g∗) ≡ dC

dg
(g∗) = λ

I.e. the generator increases their output until they make a net loss for any increase of

generation. [Check units: dC
dg has units e/hMW = e/MWh.]
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Marginal cost function: Example

C ′(g) is known as the marginal cost function, which shows, for each rate of generation g

what price λ the generator should be willing to supply at.

For our example the marginal cost function is given by

C ′(g) = 0.01 g + 9.3
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Net generator surplus

The area under the curve is generator costs, which as the integral of a derivative, just gives the

cost function C (g) again, up to a constant.

The net generator surplus is the short-term profit the generator makes by having variable

costs below the electricity price. It is also know as the contribution margin towards paying

the fixed costs of the generator.
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Limits to generation

Note that it is quite common for generators to be limited by e.g. their capacity G , which may

become a binding constraint, i.e. limiting factor before the price plays a role, e.g.

h(g) = g ≤ G ↔ µ

This constraint alters our KKT stationarity constraint for g to

0 =
∂L
∂g

=
∂f

∂g
− µ∗ ∂h

∂g
= λ− C ′(g∗)− µ∗

Now the shadow price of the constraint is given by

µ∗ = λ− C ′(g∗)

If it is binding, it tells us the benefit to our objective function of an incremental increase in

capacity G . It is called the inframarginal rent, i.e. difference between the market price λ and

the marginal cost C ′(g∗).
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Limits to generation: Example

Consider the constraint

g ≤ G ↔ µ

with capacity G = 250 MW so that for our example it is binding g∗ = G = 250 MW. The

inframarginal rent µ∗ = λ− C ′(g∗) can be marked on the graph:
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Consumer behaviour: Theory

Suppose for some given period a consumer consumes electricity at a rate of d MW.

Their utility or value function U(d) in e/h is a measure of their benefit for a given

consumption rate d .

For a firm this could be the profit related to this electricity consumption from manufacturing

goods.

Typical the consumer has a higher utility for higher d , i.e. the first derivative is positive

U ′(d) > 0. By assumption, the rate of value increase with consumption decreases the higher

the rate of consumption, i.e. U ′′(d) < 0.
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Utility: Example

A widget manufacturer has a utility function which depends on the rate of electricity

consumption d [e/h] as

U(d) = 0.0667 d3 − 8 d2 + 300 d
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Note that the slope is always positive, but becomes less positive for increasing d .
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Optimal consumer behaviour

We assume that the consumer is a price-taker, i.e. they cannot influence the price by

changing the amount they consume.

Suppose the market price is λ e/MWh. The consumer should adjust their consumption rate d

to maximise their net surplus

max
d

[U(d)− λd ]

This optimisation problem is optimised for d = d∗ where from KKT stationarity we now get

U ′(d∗) ≡ dU

dd
(d∗) = λ

[Check units: dU
dd has units e/hMW = e/MWh.]

I.e. the consumer increases their consumption until they make a net loss for any increase of

consumption.

U ′(d) is known as the inverse demand curve or marginal utility curve, which shows, for

each rate of consumption d what price λ the consumer should be willing to pay.
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Inverse demand function: Example

For our example the inverse demand function is given by

U ′(d) = 0.2 d2 − 16 d + 300
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It’s called the inverse demand function, because the demand function is the function you get

from reversing the axes.
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Inverse demand function: Example

The demand function D(λ) gives the demand d as a function of the price λ. D(U ′(d)) = d .

For our example the demand function is given by

D(λ) = −((λ+ 20)/0.2)0.5 + 40
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Gross consumer surplus

The area under the inverse demand curve is the gross consumer surplus, which as the

integral of a derivative, just gives the utility function U(d∗) again, up to a constant.
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Net consumer surplus

The more relevant net consumer surplus, or just consumer surplus is the net gain the

consumer makes by having marginal utility above the electricity price, i.e. U(d∗)− λd∗.
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Limits to consumption

Note that it is quite common for consumption to be limited by other factors before the

electricity price becomes too expensive, e.g. due to the size of electrical machinery. This gives

an upper bound

d ≤ D ↔ µ

The shadow price µ indicates the benefit of relaxing the constraint. From KKT

µ∗ = U ′(d∗)− λ. In the following case the optimal consumption is at d∗ = D = 10 MW.
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Consumers can delay their consumption

Besides changing the amount of electricity consumption, consumers can also shift their

consumption in time.

For example electric storage heaters use cheap electricity at night to generate heat and then

store it for daytime.

The LHC particle accelerator does not run in the winter, when prices are higher (see

http://home.cern/about/engineering/powering-cern). Summer demand: 200 MW,

corresponds to a third of Geneva, equal to peak demand of Rwanda (!); winter only 80 MW.

33
Source: CERN
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Consumers can also move location

Aluminium smelting is an electricity-intensive process. Aluminium smelters will often move to

locations with cheap and stable electricity supplies, such as countries with lots of hydroelectric

power. For example, 73% of Iceland’s total power consumption in 2010 came from aluminium

smelting.

Aluminium sells on world markets for around US$ 1500/ tonne.

Electricity consumption: 15 MWh/tonne.

At Germany consumer price of electricity of e300 / MWh, this is e4500 / tonne. Industrial

consumers pay less.

If raw materials cost $ 600/tonne, then have $ 900/tonne available for buying electricity while

still making profit ⇒ willingness to pay of up to 900/15 $/MWh = 60 $/MWh.
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Summary: Consumers and Generators

Generators: A generator has a cost or supply function C (g) in e/h, which gives the costs

(of fuel, etc.) for a given rate of electricity generation g MW. If the market price is λ e/MWh,

the revenue is λg and the generator should adjust their generation rate g to maximise their net

generation surplus, i.e. their short-term profit:

max
g

[λg − C (g)]

Consumers: Their utility or value function U(d) in e/h is a measure of their benefit for a

given consumption rate d . For a given price λ they adjust their consumption rate d such that

their net surplus is maximised:

max
d

[U(d)− λd ]
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Supply and Demand at a Single

Node



Setting the quantity and price

Now let’s consider the case with many consumers and generators. We build aggregated

marginal cost and marginal utility curves from the individual curves.

Then we maximise total welfare, the sum of net consumer and generator surplus of all actors.

If the price is also set from this point, then the individual optimal actions of each actor will

achieve this result in a perfect decentralised market.
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The result of optimisation

This is the result of maximising the total economic welfare, the sum of the consumer and the

producer surplus for consumers b with consumption db and generators s generating with rate

gs :

max
{db},{gs}

[∑
b

Ub(db)−
∑
s

Cs(gs)

]

subject to the supply equalling the demand in the balance constraint:∑
b

db −
∑
s

gs = 0 ↔ λ

and any other constraints (e.g. limits on generator capacity, etc.).

Market price λ is the shadow price of the balance constraint, i.e. the cost of supply an extra

increment 1 MW of demand.
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Why decentralised markets work (in theory)

We will now show our main result:

Welfare-maximisation through decentralised markets

The welfare-maximising combination of production and consumption can be achieved by the

decentralised profit-maximising decisions of producers and the utility-maximising decisions of

consumers, provided that the conditions for perfect competition are met:

• The market price is equal to the shadow price of the overall supply-balance constraint in

the welfare maximisation problem

• There are many producers and consumers, so that none can influence the price, i.e. all

actors are price takers

• The goods are exactly the same, i.e. homogeneous

• All actors have perfect information

• There are no entry or exit barriers
38



KKT and Welfare Maximisation 1/2

Apply KKT now to maximisation of total economic welfare:

max
{db},{gs}

f ({db}, {gs}) =

[∑
b

Ub(db)−
∑
s

Cs(gs)

]
subject to the balance constraint:

g({db}, {gs}) =
∑
b

db −
∑
s

gs = 0 ↔ λ

and any other constraints (e.g. limits on generator capacity, etc.).

Our optimisation variables are {x} = {db} ∪ {gs}.

We get from KKT stationarity at the optimal point:

0 =
∂f

∂db
− λ∗ ∂g

∂db
= U ′

b(d
∗
b )− λ∗ = 0

0 =
∂f

∂gs
− λ∗ ∂g

∂gs
= −C ′

s(g
∗
s ) + λ∗ = 0
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KKT and Welfare Maximisation 2/2

So at the optimal point of maximal total economic welfare we get the same result as if

everyone maximises their own welfare separately based on the price λ∗:

U ′
b(d

∗
b ) = λ∗

C ′
s(g

∗
s ) = λ∗

This is the CENTRAL result of microeconomics.

If we have further inequality constraints that are binding (e.g. capacity constraints), then these

equations will receive additions with µ∗
i > 0.
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Power Production Real Example

At energy-charts.de you can see the forecast of load, wind, solar and conventional generation

right now in Germany, here’s an old version:
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https://energy-charts.de/power_de.htm


Supply-Demand Curve Real Example

At epexspot.com you can find the results of the day ahead auction for electricity with

supply-demand bid curves for every hour. This only partially maps onto the merit order curve,

since electricity is also sold on other markets (e.g. over-the-counter).

42

https://www.epexspot.com/en/market-data?market_area=AT&trading_date=2020-06-04&delivery_date=2020-06-05&underlying_year=&modality=Auction&sub_modality=DayAhead&product=60&data_mode=aggregated&period=
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