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Optimisation: Motivation



What to do about variable renewables?

Backup energy costs money and may also cause CO2 emissions.

Curtailing renewable energy is also a waste.

We consider four options to deal with variable renewables:

1. Smoothing stochastic variations of renewable feed-in over larger areas, e.g. the whole of

European continent.

2. Using storage to shift energy from times of surplus to deficit.

3. Shifting demand to different times, when renewables are abundant.

4. Consuming the electricity in other sectors, e.g. transport or heating.

Optimisation in energy networks is a tool to assess these options.
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Why optimisation?

In the energy system we have lots of degrees of freedom:

1. Power plant and storage dispatch

2. Renewables curtailment

3. Dispatch of network elements (e.g. High Voltage Direct Current (HVDC) lines)

4. Capacities of everything when considering investment

but we also have to respect physical constraints:

1. Meet energy demand

2. Do not overload generators or storage

3. Do not overload network

and we want to do this while minimising costs. Solution: optimisation.
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Optimisation: Introduction



Simplest 1-d optimisation problem

Consider the following problem. We have a function f (x) of one variable x ∈ R

f (x) = (x − 2)2

Where does it reach a minimum? School technique: find stationary point df
dx = 2(x − 2) = 0,

i.e. minimum at x∗ = 2 where f (x∗) = 0.
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Simplest 1-d optimisation problem

Consider the following problem. We have a function f (x) of one variable x ∈ R

f (x) = x3 − 4x2 + 3x + 4

Where does it reach a minimum? School technique fails since has two stationary points, one

local minimum and local maximum; must check 2nd derivative for minimum/maximum. Also:

function is not bounded as x → −∞. No solution!
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Beware saddle points in higher dimensions

Some functions have saddle points with zero derivative in all directions (stationary points) but

that are neither maxima nor minima, e.g. f (x , y) = x2 − y2 at (x , y) = (0, 0).
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Simplest 1-d optimisation problem

Consider the following problem. We have a function f (x) of one variable x ∈ R

f (x) = x4 − 4x2 + x + 5

Where does it reach a minimum? Now two separate local minima. Function is not convex

downward. This is a problem for algorithms that only search for minima locally.
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Simplest 1-d optimisation problem with constraint

Consider the following problem. We minimise a function of one variable x ∈ R

min
x
(x − 2)2

subject to a constraint

x ≥ 1

The constraint has no effect on the solution. It is non-binding.
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Simplest 1-d optimisation problem with constraint

Consider the following problem. We minimise a function of one variable x ∈ R

min
x
(x − 2)2

subject to a constraint

x ≥ 3

Now the constraint is binding and is saturated at the optimum x∗ = 3.
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Simple 2-d optimisation problem

Consider the following problem. We have a function f (x , y) of two variables x , y ∈ R

f (x , y) = 3x

and we want to find the maximum of this function in the x − y plane

max
x,y∈R

f (x , y)

subject to the following constraints

x + y ≤ 4 (1)

x ≥ 0 (2)

y ≥ 1 (3)
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Simple 2-d optimisation problem

Consider x − y plane of our variables:
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Simple 2-d optimisation problem

Add constraints (2) and (3):
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Simple 2-d optimisation problem

Add constraint (1). In this allowed space (white area) what is the maximum of f (x , y) = 3x?
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Simple 2-d optimisation problem

f (x , y) = 3x maximised at x∗ = 3, y∗ = 1, f (x∗, y∗) = 9:
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Simple 2-d optimisation problem

Consider the following problem. We have a function f (x , y) of two variables x , y ∈ R

f (x , y) = 3x

and we want to find the maximum of this function in the x − y plane

max
x,y∈R

f (x , y)

subject to the following constraints

x + y ≤ 4 (4)

x ≥ 0 (5)

y ≥ 1 (6)

Optimal solution: x∗ = 3, y∗ = 1, f (x∗, y∗) = 9.

NB: We would have gotten the same solution if we had removed the 2nd constraint - it is

non-binding.
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Another simple optimisation problem

We can also have equality constraints. Consider the maximum of this function in the x − y − z

space

max
x,y ,z∈R

f (x , y , z) = (3x + 5z)

subject to the following constraints

x + y ≤ 4

x ≥ 0

y ≥ 1

z = 2

Optimal solution: x∗ = 3, y∗ = 1, z∗ = 2, f (x∗, y∗, z∗) = 19.

[This problem is separable: can solve for (x , y) and (z) separately.]
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Energy system mapping to an optimisation problem

This optimisation problem has the same basic form as our energy system considerations:

Objective function to minimise
↔

Minimise total costs

Optimisation variables
↔

Physical degrees of freedom (power

plant dispatch, etc.)

Constraints
↔

Physical constraints (overloading,

etc.)
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Simple energy system example

Have to meet annual electricity demand of 500 TWhel/a. Have two generators:

Generator Capacity limit Yearly limit efficiency fuel cost specific emissions

GWel TWhel/a e/MWhth tCO2/MWhth

gas 40 350 0.6 20 0.2

coal 34 300 0.4 8 0.3

• What is the minimum cost solution (considering only fuel costs)?

• What is the minimum cost solution if we restrict emissions to 300 MtCO2/a?

• What about 250 MtCO2/a?
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Simple energy system example

2 variables: x1 for yearly electricity generation from gas, x2 for generation from coal.

Specific electricity costs are given by fuel cost divided by efficency. For gas

o1 =
20e/MWhth

0.6
= 33e/MWhel

For coal

o2 =
8e/MWhth

0.4
= 20e/MWhel

So the cheapest option is to produce as much from coal as possible. But there are capacity

constraints!

⇒ Generate maximum from coal (300 TWhel/a), rest from gas (200 TWhel/a).

Consume 750 TWhth/a of coal and 333 TWhth/a of gas ⇒ emissions of 225 + 67 = 292

MtCO2/a.
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Simple energy system example

The objective function minimises total electricity generation costs:

min
x1,x2

f (x1, x2) = o1x1 + o2x2

such that we meet the yearly demand:

x1 + x2 = 500

and we respect the capacity constraints:

0 ≤ x1 ≤ 350

0 ≤ x2 ≤ 300

as well as the emissions limit:
e1
η1

x1 +
e2
η2

x2 ≤ 300

where ei is the specific emissions and ηi is the efficiency.

Optimal solution: x∗1 = 200, x∗2 = 300.
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Simple energy system example

The optimal solution is given by x∗1 = 200, x∗2 = 300.
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Simple energy system example

An emissions cap of ≤ 300 MtCO2/a is non-binding - the solution stays the same.
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Simple energy system example

If we restrict emissions from 300 to 250 MtCO2/a, the solution shifts to x∗1 = 300, x∗2 = 200.
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Optimisation: Theory



Optimisation problem

We have an objective function f : Rk → R

max
x

f (x)

[x = (x1, . . . xk)] subject to some constraints within Rk :

gi (x) = ci ↔ λi i = 1, . . . n

hj(x) ≤ dj ↔ µj j = 1, . . .m

λi and µj are the Karush-Kuhn-Tucker (KKT) multipliers (basically Lagrange multipliers)

we introduce for each constraint equation. Each one measures the change in the objective

value of the optimal solution obtained by relaxing the constraint by a small amount. Informally

λi ∼ ∂f
∂ci

and µj ∼ ∂f
∂dj

at the optimum x∗. They are also known as the shadow prices of the

constraints.
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Feasibility

The space X ⊂ Rk which satisfies

gi (x) = ci ↔ λi i = 1, . . . n

hj(x) ≤ dj ↔ µj j = 1, . . .m

is called the feasible space.

It will have dimension lower than k if there are independent equality constraints.

It may also be empty (e.g. for k = 1, x ≥ 1, x ≤ 0 in R1), in which case the optimisation

problem is called infeasible.

It can be convex or non-convex.

If all the constraints are affine, then the feasible space is a convex polytope (multi-dimensional

polygon).
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Convexity means fast polynomial algorithms

If the feasible space is convex it is much easier to search, since for a convex objective function

we can keep looking in the direction of improving objective function without worrying about

getting stuck in a local maximum.
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Lagrangian

We now study the Lagrangian function

L(x , λ, µ) = f (x)−
∑
i

λi [gi (x)− ci ]−
∑
j

µj [hj(x)− dj ]

We’ve built this function using the variables λi and µj to better understand the optimal

solution of f (x) given the constraints.

The stationary points of L(x , λ, µ) tell us important information about the optima of f (x)

given the constraints.

[It is entirely analogous to the physics Lagrangian L(x , ẋ , λ) except we have no explicit time

dependence ẋ and we have additional constraints which are inequalities.]

We can already see that if ∂L
∂λi

= 0 then the equality constraint gi (x) = c will be satisfied.

[Beware: ± signs appear differently in literature, but have been chosen here such that λi =
∂L
∂ci

and µj =
∂L
∂dj

.]
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Optimum is a saddle point of the Lagrangian

The stationary point of L is a saddle point in (x , λ, µ) space (here minimising f (x)):

28
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KKT conditions

The Karush-Kuhn-Tucker (KKT) conditions are necessary conditions that an optimal

solution x∗, µ∗, λ∗ always satisfies (up to some regularity conditions):

1. Stationarity: For ℓ = 1, . . . k

∂L
∂xℓ

=
∂f

∂xℓ
−
∑
i

λ∗
i

∂gi
∂xℓ

−
∑
j

µ∗
j

∂hj
∂xℓ

= 0

2. Primal feasibility:

gi (x
∗) = ci

hj(x
∗) ≤ dj

3. Dual feasibility: µ∗
j ≥ 0

4. Complementary slackness: µ∗
j (hj(x

∗)− dj) = 0
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Complementarity slackness for inequality constraints

We have for each inequality constraint

µ∗
j ≥ 0

µ∗
j (hj(x

∗)− dj) = 0

So either the inequality constraint is binding

hj(x
∗) = dj

and we have µ∗
j ≥ 0.

Or the inequality constraint is NOT binding

hj(x
∗) < dj

and we therefore MUST have µ∗
j = 0.

If the inequality constraint is non-binding, we can remove it from the optimisation problem,

since it has no effect on the optimal solution.
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Nota Bene

1. The KKT conditions are necessary conditions for an optimal solution, but are only

sufficient for optimality of the solution under certain conditions, e.g. for problems with

convex objective, convex differentiable inequality constraints and affine equalities

constraints. For linear problems, KKT is sufficient.

2. The variables xℓ are often called the primary variables, while (λi , µj) are the dual

variables.

3. Since at the optimal solution we have gi (x
∗) = ci for equality constraints and

µ∗
j (hj(x

∗)− dj) = 0, we have

L(x∗, λ∗, µ∗) = f (x∗)
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How we will use the KKT conditions

Usually we will have enough constraints to determine the k values x∗ℓ for ℓ = 1, . . . k uniquely,

i.e. k independent constraints will be binding and the objective function is never constant

along any constraint.

We will use the KKT conditions, primarily stationarity, to determine the values of the k KKT

multipliers for the independent binding constraints.

Dimensionality check: we need to find k KKT multipliers and we have k equations from

stationarity to find them. Good!

The remaining KKT multipliers are either zero (for non-binding constraints) or dependent on

the k independent KKT multipliers in the case of dependent constraints.

(There are also degenerate cases where the optimum is not at a single point, where things will

be more complicated, e.g. when objective function is constant along a constraint.)
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Return to simple optimisation problem

We want to find the maximum of this function in the x − y plane

max
x,y∈R

f (x , y) = 3x

subject to the following constraints (now with KKT multipliers)

x + y ≤ 4 ↔ µ1

−x ≤ 0 ↔ µ2

−y ≤ −1 ↔ µ3

We know the optimal solution in the primal variables x∗ = 3, y∗ = 1, f (x∗, y∗) = 9.

What about the dual variables µi?

Since the second constraint is not binding, by complementarity µ∗
2(−x∗ − 0) = 0 we have

µ∗
2 = 0. To find µ∗

1 and µ∗
3 we have to do more work.
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Simple problem with KKT conditions

We use stationarity for the optimal point:

0 =
∂L
∂x

=
∂f

∂x
−
∑
i

λ∗
i

∂gi
∂x

−
∑
j

µ∗
j

∂hj
∂x

= 3− µ∗
1 + µ∗

2

0 =
∂L
∂y

=
∂f

∂y
−
∑
i

λ∗
i

∂gi
∂y

−
∑
j

µ∗
j

∂hj
∂y

= −µ∗
1 + µ∗

3

From which we find:

µ∗
1 = 3− µ∗

2 = 3

µ∗
3 = µ∗

1 = 3

Check interpretation: µj =
∂L
∂dj

with dj → dj + ε.
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Simple problem with KKT conditions: Check interpretation

Check interpretation of µ∗
1 = 3 by shifting constant d1 for first constraint by ε and solving:

max
x,y∈R

f (x , y) = 3x

subject to the following constraints

x + y ≤ 4 + ε ↔ µ1

−x ≤ 0 ↔ µ2

−y ≤ −1 ↔ µ3
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Simple problem with KKT conditions: Check interpretation

f (x , y) = 3x maximised at x∗ = 3 + ε, y∗ = 1, f (x∗, y∗) = 9 + 3ε.

d1 → d1 + ε causes optimum to shift f (x∗, y∗) → f (x∗, y∗) + 3ε. Consistent with µ∗
1 = 3.
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Return to another simple optimisation problem

We want to find the maximum of this function in the x − y − z space

max
x,y ,z∈R

f (x , y , z) = 3x + 5z

subject to the following constraints (now with KKT multipliers)

x + y ≤ 4 ↔ µ1

−x ≤ 0 ↔ µ2

−y ≤ −1 ↔ µ3

z = 2 ↔ λ

We know the optimal solution in the primal variables

x∗ = 3, y∗ = 1, z∗ = 2, f (x∗, y∗, z∗) = 19.

What about the dual variables µi , λ?

We get same solutions to µ∗
1 = 3, µ∗

2 = 0, µ∗
3 = 3 because they’re not coupled to z direction.

What about λ∗?
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Another simple problem with KKT conditions

We use stationarity for the optimal point:

0 =
∂L
∂z

=
∂f

∂z
−
∑
i

λ∗
i

∂gi
∂z

−
∑
j

µ∗
j

∂hj
∂z

= 5− λ∗

From which we find:

λ∗ = 5

Check interpretation: λi =
∂L
∂ci

with ci → ci + ε.
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An example for you to do

Find the values of x∗, y∗, µ∗
i

max
x,y∈R

f (x , y) = y

subject to the following constraints

y + x2 ≤ 4 ↔ µ1

y − 3x ≤ 0 ↔ µ2

−y ≤ 0 ↔ µ3
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Simple energy system example

Objective function:

min
x1,x2

f (x1, x2) = o1x1 + o2x2

with constraints:

x1 + x2 = 500 ↔ λ

x1 ≤ 350 ↔ µ̄1

−x1 ≤ 0 ↔ µ
¯1

x2 ≤ 300 ↔ µ̄2

−x2 ≤ 0 ↔ µ
¯2e1

η1
x1 +

e2
η2

x2 ≤ 300 ↔ µ

Stationarity for i = 1, 2:

0 =
∂L
∂xi

=
∂f

∂xi
−
∑
i

λ∗
i

∂gi
∂xi

−
∑
j

µ∗
j

∂hj
∂xi

= oi − λ∗ − µ̄∗
i + µ

¯

∗
i
− ei

ηi
µ∗
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Simple energy system example

An emissions cap of ≤ 300 MtCO2/a (red) is non-binding.
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Simple energy system example

For an emissions limit of 300 we had x∗1 = 200, x∗2 = 300. Because so many constraints were

non-binding here, we had:

µ
¯

∗
1
= µ

¯

∗
2
= µ̄∗

1 = µ∗ = 0

The only non-zero dual variables are for the binding demand constraint λ∗ and the binding

capacity constraint for coal µ̄∗
2 . Thus we get from stationarity:

λ∗ = o1 λ∗ = o2 − µ̄∗
2

λ∗ = o1 = 33 e/MWhel is the price of supplying an extra unit of electricity. It comes from the

gas generator, which still has free dispatchable capacity.

µ̄∗
2 = o2 − λ∗ = o2 − o1 = (20− 33) e/MWhel = −13 e/MWhel is the system cost decrease if

the capacity of generator 2 (coal) expands by one unit. This allows us to substitute more

expensive generation from gas (at 33e/MWhel) with cheaper generation from coal (at

20e/MWhel).
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Simple energy system example

For a binding emissions limit of 250 we had x∗1 = 300, x∗2 = 200. Because none of the

generation constraints are non-binding here, we have µ
¯

∗
1
= µ

¯

∗
2
= µ̄∗

1 = µ̄∗
2 = 0.

The only non-zero dual variables are for the binding demand constraint λ∗ and the binding

emissions constraint µ∗. Thus we get from stationarity:

λ∗ = o1 −
e1
η1

µ∗ λ∗ = o2 −
e2
η2

µ∗

Again we have two equations for two unknowns (λ∗ and µ∗) and solve to find:

µ∗ =
o1 − o2
e1
η1

− e2
η2

=
33.3− 20

0.333− 0.75
= −32 e/tCO2

and λ∗ = 44 e/MWhel. How do we interpret these shadow prices?

Looking at the equation for µ∗, o1 − o2 is the cost in e/MWhel of replacing coal with gas to

reduce emissions, divided by the emissions reduced e2
η2

− e1
η1

in tCO2/MWhel, multiplied by −1.
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Simple energy system example

The magnitude of µ∗ is the marginal abatement cost for CO2 reduction, i.e. what it costs to

reduce the next tCO2 from the system (e.g. by replacing coal generation by gas). It is negative

in this case because µ∗ by definition measures the cost reduction by increasing the CO2 limit

by ε, rather than the cost increase by tightening. (Whereas in maximisation problems we have

dual feasibility µ∗
j ≥ 0, for minimisation problems we have µ∗

j ≤ 0 since we obtain a lower

objective function when we relax the constraint.)

The market price λ∗ = 44 e/MWhel is higher than either generator’s marginal cost. Why?

Because we have to obey the emissions constraint. If we raise demand by 1 MWhel, we increase

gas generation, but this increases also CO2 emissions. To compensate and reduce emissions, we

have to substitute some coal for gas. Coal is cheaper than gas, so this also raises the costs.

In another interpretation: we have

λ∗ = oi −
ei
ηi
µ∗

so µ∗ is adding an effective carbon price to the fuel-based marginal cost, thus increasing the

marginal cost (remember µ∗ is negative). 44



Optimisation: Solution

Algorithms



Optimisation solution algorithms

In general finding the solution to optimisation problems is hard, at worst NP-hard. Non-linear,

non-convex and/or discrete (i.e. some variables can only take discrete values) problems are

particularly troublesome.

There is specialised software for solving particular classes of problems (linear, quadratic,

discrete etc.).

Since we will mostly focus on linear problems, the main two algorithms of relevance are:

• The simplex algorithm

• The interior-point algorithm
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Simplex algorithm

The simplex algorithm works for linear problems by

building the feasible space, which is a

multi-dimensional polyhedron, and searching its

surface for the solution.

If the problem has a solution, the optimum can be

assumed to always occur at (at least) one of the

vertices of the polyhedron. There is a finite

number of vertices.

The algorithm starts at a feasible vertex. If it’s not

the optimum, the objective function will increase

along one of the edges leading away from the

vertex. Follow that edge to the next vertex.

Repeat until the optimum is found.

Complexity: On average over given set of

problems can solve in polynomial time, but worst

cases can always be found with exponential time. 46
Source: Wikipedia

https://en.wikipedia.org/wiki/Simplex_algorithm#/media/File:Simplex-method-3-dimensions.png


Interior point methods

Interior point methods can be used on more

general non-linear problems. They search the

interior of the feasible space rather than its surface.

They achieve this by extremising the objective

function plus a barrier term that penalises

solutions that come close to the boundary.

As the penality becomes less severe the algorithm

converges to the optimum point at the boundary.

Complexity: For linear problems, Karmakar’s

version of the interior point method can run in

polynomial time.

47
Source: Wikipedia

https://en.wikipedia.org/wiki/Interior-point_method#/media/File:Karmarkar.svg


Interior point methods: Barrier method

Take a problem

min
{xℓ,ℓ=1,...k}

f (x)

such that for

gi (x) = 0 ↔ λi , i = 1 . . . n

x ≥ 0

Any optimisation problem can be brought into this form. Introduce the barrier function

B(x , µ) = f (x)− µ

k∑
ℓ=1

ln(xℓ)

where µ is the small and positive barrier parameter (a scalar). Note that the barrier term

penalises solutions when x comes close to 0 by becoming large and positive.
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Interior point methods: Barrier method

Barrier term −µln(x) penalises the minimisation the closer we get to x = 0. As µ gets smaller

it converges on being a near-vertical function at x = 0.
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Interior point methods: Barrier method: 1-d example

Return to our old 1-d example. We minimise a function of one variable x ∈ R

min
x
(x − 2)2

subject to a constraint

x ≥ 3

Solution: x∗ = 3.
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Interior point methods: Barrier method: 1-d example

Now instead minimise the barrier problem without any constraint:

min
x

B(x , µ) = (x − 2)2 − µ ln(x − 3)

Solve ∂B(x,µ)
∂x = 2(x − 2)− µ

x−3 = 0, i.e. at x∗ = 2.5 + 0.5
√
1 + 2µ → 3 as µ → 0.
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Interior point methods: Barrier method

The problem

min
{xℓ,ℓ=1,...k}

[
f (x)− µ

k∑
ℓ=1

ln(xℓ)

]
such that

ci (x) = 0 ↔ λi , i = 1 . . . n

can now be solved using the extremisation of the Lagrangian like we did for KKT sufficiency.

Solve the following equation system iteratively using the Newton method to find the xℓ and λi :

∇ℓf (x)− µ
1

xℓ
+
∑
i

λi∇ℓci (x) = 0

ci (x) = 0

See this nice video for more details and visuals.
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https://www.youtube.com/watch?v=zm4mfr-QT1E
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