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Graph Theory



The goal of power flow analysis

The goal of a power/load flow analysis is to find the

flows in the lines of a network given a power

injection pattern at the nodes.

I.e. given power injection at the nodes

Pi =


50

50

0

−100


what are the flows in lines 1-4?
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Definition of a network

Our definition (Newman): A network (graph) is a collection of vertices (nodes) joined by

edges (links).

More precise definition (Bollobàs): An undirected graph G is an ordered pair of disjoint sets

(V ,E ) such that E (the edges) is a subset of the set V (2) of unordered pairs of V (the

vertices).
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Edge list representation

� Vertices:

1,2,3,4,5,6

� Edges:

(1,2), (1,3), (1,6), (2,3), (3,4),

(4,5), (4,6)

Definition from graph theory:

� N = 6 vertices: order of the

graph

� L = 7 edges: size of the graph

4



Adjacency matrix A

Aij =

{
1 if there is an edge between vertices i and j

0 otherwise.

A =



0 1 1 0 0 1

1 0 1 0 0 0

1 1 0 1 0 0

0 0 1 0 1 1

0 0 0 1 0 0

1 0 0 1 0 0



� Diagonal elements are zero.

� Symmetric matrix for an undirected graph.

� If there are N vertices, it’s an N × N matrix.
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Multigraph

There can be more than one edge between a pair of vertices.

A =



0 1 1 0 0 3

1 0 2 0 0 0

1 2 0 1 0 0

0 0 1 0 1 1

0 0 0 1 0 0

3 0 0 1 0 0
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Self-edges

There can be self-edges (also called self-loops).

A =



0 1 1 0 0 3

1 0 1 0 0 0

1 1 2 1 0 0

0 0 1 2 1 1

0 0 0 1 0 0

3 0 0 1 0 0



� Diagonal elements can be

non-zero:

Definition: Aii = 2 for one

self-edge.
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Weighted networks

We can assign a weight or strength assigned to each edge.

A =



0 1.4 0.4 0 0 0.8

1.4 0 1.2 0 0 0

0.4 1.2 0 0.2 0 0

0 0 0.2 0 0.2 0

0 0 0 0.2 0 0

0.8 0 0 0.4 0 0



Weights can be both positive or negative.
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Components of networks

� Subgroups of vertices with no connections between

the respective groups

� Disconnected network

� Subgroups: components

� Adjacency matrix: Block-diagonal form
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Directed Networks (Digraphs)

A graph is directed if each edge is pointing from one vertex to another (directed edge).

Aij =

{
1 if there is an edge from j to i

0 otherwise.

A =



0 0 0 0 0 0

1 0 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

1 0 0 1 0 0



In general the adjacency matrix of a directed network is asymmetric.
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Degree

� The degree ki of a vertex i is defined as the number of edges connected to i .

� Average degree of the network: ⟨k⟩.

In terms of the adjacency matrix A:

ki =
n∑

j=1

Aij , ⟨k⟩ = 1

n

∑
i

ki =
1

n

n∑
i=1

n∑
j=1

Aij .

k5 = 1

k2 = k6 = 2

k1 = k3 = k4 = 3

⟨k⟩ = 2.33
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Examples

12
Source: Network Science (2015) by Albert-László Barabási

http://networksciencebook.com/


Degree matrix D

Dij =

{
ki if i = j

0 otherwise.

It’s an N × N matrix again:

D =



3 0 0 0 0 0

0 2 0 0 0 0

0 0 3 0 0 0

0 0 0 3 0 0

0 0 0 0 1 0

0 0 0 0 0 2
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Laplacian L

The Laplacian matrix is an N × N matrix defined for an undirected graph by

L = D− A

L =



3 −1 −1 0 0 −1

−1 2 −1 0 0 0

−1 −1 3 −1 0 0

0 0 −1 3 −1 −1

0 0 0 −1 1 0

−1 0 0 −1 0 2


� L inherits symmetry from D and A for the undirected

graph.

� The columns (and rows) sum to zero, since for each node,

the degree equals the number of adjacent nodes.

� For a set of connected nodes I ,
∑

i∈I Lij = 0 ∀j . 14



Eigenvalues and eigenvectors of Laplacian L

The number of eigenvectors with zero eigenvalues equals the number of connected components.

For our connected graph, the single zero eigenvector is (1, 1, . . . 1):

L



1

1

1

1

1

1


=



3 −1 −1 0 0 −1

−1 2 −1 0 0 0

−1 −1 3 −1 0 0

0 0 −1 3 −1 −1

0 0 0 −1 1 0

−1 0 0 −1 0 2





1

1

1

1

1

1


=



0

0

0

0

0

0


Multiplying this eigenvector sums the rows, which gives zero.

The image of the matrix is made of differences across the nodes, so is N − 1 dimensional.
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Eigenvalues and eigenvectors of Laplacian L

For a graph with two connected components, the Laplacian becomes block diagonal for the

components, since there are no edges linking the components in the adjacency matrix:

L =



2 −1 −1

−1 2 −1

−1 −1 2

2 −1 −1

−1 2 −1

−1 −1 2



1 2

3

4

5 6

Verify that the two zero eigenvectors are (1, 1, 1, 0, 0, 0) and (0, 0, 0, 1, 1, 1) corresponding to

the connected components.
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The incidence matrix

For a directed graph (every edge has an orientation) G = (V ,E ) with N nodes and L edges,

the node-edge incidence matrix K ∈ RN×L has components

Kiℓ =


1 if edge ℓ starts at node i

−1 if edge ℓ ends at node i

0 otherwise

K =


1 0 0 0

−1 1 1 0

0 −1 0 1

0 0 −1 −1

 4 2

3

1

1

24

3
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Incidence matrix properties

The incidence matrix has several important properties.

First, for a given edge ℓ, the corresponding column sums to zero
∑

i Kiℓ = 0, since every edge

starts at some node (+1) and ends at some node (-1).

The row corresponding to each node i tells you which edges start there (+1) and which edges

end there (-1).

It is related to the Laplacian matrix by

L = KK t

Check the definitions agree:

Lij =
∑
ℓ

KiℓKjℓ

for i = j and i ̸= j .

NB: K is defined for a directed graph, but L for the undirected version. The information on the

direction of the edges is lost in the formula L = KK t .
18



Incidence matrix properties

Let’s verify:

Lij =
∑
ℓ

KiℓKjℓ

For i = j we get

Lii =
∑
ℓ

(Kiℓ)
2

The summands are only non-zero if the line ℓ is attached to i , so we get the degree

Lii = ki

Correct!

For i ̸= j we have

Lij =
∑
ℓ

KiℓKjℓ

If there is no line between i and j , then both sides are zero.

If there is a line between i and j one of Kiℓ and Kjℓ is +1, while the other is −1, so we get

Lij = −1. Correct! 19



The kernel of the incidence matrix

The kernel of Kiℓ, i.e. particular combinations of edges which are annihilated by K , has a very

special meaning.

Consider the combination of edges (0, 1,−1, 1)t

K


0

1

−1

1

 =


1 0 0 0

−1 1 1 0

0 −1 0 1

0 0 −1 −1




0

1

−1

1

 =


0

0

0

0


This corresponds to a cycle in the graph. A cycle is a path through the network that returns to

its starting node. Each node in the cycle has an edge that ends there and an edge that starts

there, so is annihilated by K .
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A cycle

For our graph:

4 2

3

1

1

24

3

The combination of edges (0, 1,−1, 1)t

corresponds to the cycle:

4 2

3

NB: The direction of edge 3 is reversed by the

minus sign.
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Cycle matrix

We can organise the cycles in a matrix Cℓc , where c labels each cycle.

We have

KC = 0

by definition of C being in the kernel.

The image of K has dimension N − 1 (i.e. the rank of K ) for a connected graph, since the

space spanned by the columns of K can only reach differences between nodes and never then

N-length vector (1, 1, . . . 1)t .

By the rank-nullity theorem for K we have

L = dim imK + dimkerK

so the number of cycles, i.e. the dimension of the kernel (nullity) of K is L− N + 1. If the

connected graph has no cycles, i.e. it is a tree, then L = N − 1.

In our case L = 4, N = 4 so there is only 1 cycle

C = (0, 1,−1, 1)t 22



Independent basis of cycles

f1

f2

f3

f4
f5

c1 c2

Two independent cycles:

c1 = f1 + f5 + f4

c2 = f2 + f3 +−f5

The outer cycle is not independent:

c3 = f1 + f2 + f3 + f4 = c1 + c2
23



Trees

� Trees play an import role for random

graph models.

� In a tree, there is exactly one path

between any pair of vertices.

� A tree of N vertices always has exactly

N − 1 edges.

� Any connected network with N vertices

and N − 1 edges is a tree.

� Trees have no cycles.

� A collection of trees is called a forest.
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Planar networks

A planar network is a network that can be drawn on a plane without having any edges cross.

Examples:

� Trees

� Road networks (approximately)

� Power grids (approximately)

� Shared borders between countries, etc.
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Computing the Linear Power

Flow



The goal of power flow analysis

The goal of a power/load flow analysis is to find the

flows in the lines of a network given a power

injection pattern at the nodes.

I.e. given power injection at the nodes

Pi =


50

50

0

−100


what are the flows in lines 1-4?

To find the flows, it is sufficient to know the

reactances of the lines xℓ and the voltages angles

θi at each node.
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3

1

1

24
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Framing the load flow problem

Suppose we have N nodes labelled by i , and L edges labelled by ℓ forming a directed graph G .

Suppose at each node we have a power imbalance pi (pi > 0 means its generating more than

it consumes and pi < 0 means it is consuming more than it).

Since we cannot create or destroy energy (and we’re ignoring losses):∑
i

pi = 0

Question: How do the flows fℓ in the network relate to the nodal power imbalances?

Answer: According to the reactances (generalisation of resistance for oscillating

voltage/current) and the corresponding voltages.

27



Ohm’s Law

Ohm’s Law: The potential difference (voltage) V1 − V2 across an ideal conductor is

proportional to the current through it I . The constant of proportionality is called the

resistance, R. Ohm’s Law is thus:

V1 − V2 = I R

28



Analogy DC circuits to linear power flow

The equations for DC circuits and linear power flow in AC circuits are analogous:

I =
Vi − Vj

R
↔ fℓ =

θi − θj
xℓ

if we make the following identification:

Current flow I ↔ Active power flow fℓ

Potential/voltage Vi ↔ Voltage angle θi

Resistance R ↔ Reactance X

The simplifications that lead to the linear power flow will be explained later in the lecture.
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Kirchhoff’s Current Law (KCL)

KCL inforces energy conservation at each vertex (the power imbalance equals what goes out

minus what comes in).

+5

−5

+5

+12

−2

−7 −3

12

7 3

30



Kirchhoff’s Current Law (KCL)

KCL says (in this linear setting) that the nodal power imbalance at node i is equal to the sum

of direct flows arriving at the node. This can be expressed compactly with the incidence matrix

pi =
∑
ℓ

Kiℓfℓ ∀i

Only N − 1 of these equations are independent for a connected network, since
∑

i Kiℓ = 0.
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Kirchhoff’s Voltage Law (KVL)

KCL isn’t enough to determine the flow as soon as there are closed cycles in the network. For

this we need Ohm’s law in combination with KVL: voltage differences around each cycle add up

to zero.

+6 0

−6

?

??

For equal reactances for each edge:

+6 0

−6

2

2−4

NB: For directed graph, sign determines

direction of flow. 32



Kirchhoff’s Voltage Law (KVL)

KVL says that the sum of voltage differences across edges for any closed cycle must add up to

zero.

If the voltage angle at any node is given by θi then the voltage difference across edge ℓ is∑
i

Kiℓθi

And Kirchhoff’s law can be expressed using the cycle matrix encoding of independent cycles∑
ℓ

Cℓc

∑
i

Kiℓθi = 0 ∀c

[Automatic, since we already said KC = 0.]
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Kirchhoff’s Voltage Law (KVL)

Physics gives us the expression of the flow fℓ on each line ℓ with reactance xℓ in terms of the

voltage angles at the nodes θi (a relative of V = IR)

fℓ =
θi − θj
xℓ

=
1

xℓ

∑
i

Kiℓθi (1)

[NB: This restricts the L variables fℓ to depend only on the N voltage angles θi . Since the flow

doesn’t change under a constant shift θi → θi + c , we can choose a slack or reference node

such that θ1 = 0, so there are only N − 1 independent variables.]

KVL now becomes L− N + 1 binding constraints on the line flows fℓ∑
ℓ

Cℓcxℓfℓ = 0 ∀c (2)

[NB: Equations (1) and (2) are equivalent and both restrict our L variables fℓ to an N − 1

dimensional subspace.]
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Solving the equations via the line flows

Now we have N − 1 equations for the flows fℓ from KCL:

pi =
∑
ℓ

Kiℓfℓ ∀i ∈ {1, . . .N − 1}

and L− N + 1 equations from KVL:∑
ℓ

Cℓcxℓfℓ = 0 ∀c ∈ {1, . . . L− N + 1}

So L independent linear equations for L variables fℓ.

Can solve with e.g. LU decomposition using specialised sparse solvers, with polynomial

complexity in L. (For dense matrices complexity O(La) where 2 < a < 3.)

This formulation is useful for the optimisation later, but we can solve a smaller dimensional

linear system with N − 1 variables using the voltage angles.
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Solving 3-node example

In the 3-node example energy conservation at each vertex (Kirchhoff’s Current Law, KCL) was

not enough information to solve the power flow, since there are multiple paths in the network.

Assume equal reactances xℓ = x on each edge.

+6 0

−6

?

??

Formalise by labelling the nodes and edges:

1 2

3

1

23

We have pi = (6, 0,−6). (Check
∑

i pi = 0.)

Goal is to find fℓ for ℓ = 1, 2, 3.
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Solving 3-node example: Kirchhoff’s Current Law (KCL)

1 2

3

1

23

Kirchhoff’s Current Law gives us:

pi =
∑
ℓ

Kiℓfℓ ∀i

The incidence matrix K is given by:

Kiℓ =

 1 0 −1

−1 1 0

0 −1 1



So we get:

p1 = 6 = f1 − f3

p2 = 0 = f2 − f1

p3 = −6 = f3 − f2

Sum of KCL equations is always zero, so reduce

to N − 1 = 2 independent equations:

6 = f1 − f3

0 = f2 − f1

Not enough information to solve!

Need more information from KVL and

reactances.
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Solving 3-node example: Kirchhoff’s Voltage Law (KVL)

1 2

3

1

23

One formulation of Kirchhoff’s Voltage Law

gives us L− N + 1 equations for cycles:∑
ℓ

Cℓcxℓfℓ = 0 ∀c

The cycle matrix C is given by:

Cℓc =

1

1

1



For equal reactances xℓ = x we get:∑
ℓ

Cℓ1xℓfℓ = x(f1 + f2 + f3) = 0

Together with KCL equations we now have 3

independent equations for 3 unknowns. Solve:

f1 = 2

f2 = 2

f3 = −4
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Solving 3-node example: Solution

Solution:

+6 0

−6

2

2−4

Along 2-edge path reactance is double the

1-edge path, so half as much power flows along

the 2-edge path as the 1-edge path.

NB: For directed graph, sign determines

direction of flow.
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Solving the equations via the voltage angles

If we combine

fℓ =
1

xℓ

∑
i

Kiℓθi (3)

with Kirchhoff’s Current Law we get

pi =
∑
ℓ

Kiℓfℓ =
∑
ℓ

Kiℓ
1

xℓ

∑
j

Kjℓθj

This is a weighted Laplacian. If we write Bkℓ for the diagonal matrix with Bℓℓ =
1
xℓ

then

L = KBK t

and we get a discrete Poisson equation for the θi sourced by the pi

pi =
∑
j

Lijθj

This is a set of N − 1 sparse linear equations for the θj (N − 1 since
∑

i Lij = 0). We can solve

this for the θi and then find the flows using equation (3). Polynomial complexity in N.
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Solving the equations via the PTDF

If we are repeating the calculation for a fixed network multiple times with different power

injections, it can make sense to do the full matrix inversion.

Given pi at every node, we want to find the flows fℓ. We have the equations

pi =
∑
j

Lijθj

fℓ =
1

xℓ

∑
i

Kiℓθi

Basic idea: invert L to get θi in terms of pi

θi =
∑
k

(L−1)ikpk

then insert to get the flows as a linear function of the power injections pi

fℓ =
1

xℓ

∑
i,k

Kiℓ(L
−1)ikpk =

∑
k

PTDFℓkpk

called the Power Transfer Distribution Factors (PTDF).
41



Inverting Laplacian L

There is one small catch: L is not invertible since it has (for a connected network) one zero

eigenvalue, with eigenvector (1, 1, . . . 1), since by construction
∑

j Lij = 0.

This is related to a gauge freedom to add a constant to all voltage angles

θi → θi + c

which does not affect physical quantities:

pi =
∑
j

Lij(θj + c) =
∑
j

Lij(θj)

fℓ =
1

xℓ

∑
i

Kiℓ(θi + c) =
1

xℓ

∑
i

Kiℓ(θi )

Typically choose a slack or reference node such that θ1 = 0.
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Inverting Laplacian L

Two solutions:

1. Since θ1 = 0 and p1 is not independent of the other power injections (
∑N

i=1 pi = 0 implies

p1 = −
∑N

i=2 pi ), we can ignore these elements and invert the lower-right (N − 1)× (N − 1)

part of L (which doesn’t have zero eigenvalues) to find the remaining {θi}i=2,...N in terms of

the {pi}i=2,...N .

2. Use the Moore-Penrose pseudo-inverse.

Write L in terms of its basis of orthonormal eigenvectors eni (
∑

j Lije
n
j = λne

n
i ,

∑
i e

n
i e

n
i = 1

and
∑

i e
n
i e

m
i = 0 if n ̸= m):

Lij =
∑
n

λne
n
i e

n
j

then the Moore-Penrose pseudo-inverse is:

L†ij =
∑

n|λn ̸=0

1

λn
eni e

n
j
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Check the Moore-Penrose pseudo-inverse

Let’s check the Moore-Penrose pseudo-inverse really gives us an inverse:∑
j

LijL
†
jk =

∑
j

∑
n

λne
n
i e

n
j

∑
m|λm ̸=0

1

λm
emj emk

=
∑
n

λne
n
i

∑
m|λm ̸=0

1

λm
emk

∑
j

enj e
m
j

=
∑

m|λm ̸=0

λm

λm
emi emk

=
∑

m|λm ̸=0

emi emk

From line 2 to 3 we use the orthogonality of the eigenvectors.

This is almost the identity. It has eigenvalues 1 for each eigenvector enk except for zero

eigenvectors of L with λn = 0, which it annihilates.
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4-node example

Kiℓ =


1 0 0 0

−1 1 1 0

0 −1 0 1

0 0 −1 −1



Lij =


1 −1 0 0

−1 3 −1 −1

0 −1 2 −1

0 −1 −1 2



PTDFℓi =


0 −1 −1 −1

0 0 −2/3 −1/3

0 0 −1/3 −2/3

0 0 1/3 −1/3



4 2

3

1

1

24

3
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4-node example

∑
i

PTDFℓipi =


0 −1 −1 −1

0 0 −2/3 −1/3

0 0 −1/3 −2/3

0 0 1/3 −1/3




50

50

0

−100



=


50

33.3

66.7

33.3


-100 +50

0

+50

50

33.333.3

66.7
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PTDF as sensitivity

Can also ‘experimentally’ determine the Power Transfer Distribution Factors (PTDF) by

choosing a slack node (in this case node 1).

Each column (labelled by i) is then the resulting line flows if we have a simple power transfer

from node i to the slack pi = 1 and p1 = −1.

PTDFℓi =


0 −1 −1 −1

0 0 −2/3 −1/3

0 0 −1/3 −2/3

0 0 1/3 −1/3

 4 2

3

1

1

24

3
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PTDF as sensitivity: example of 3rd column for node 3

Focus on 3rd column of PTDF and look at

power flow with p3 = +1 and slack p1 = −1.

Coefficients determined by resulting flow:

PTDFℓ3 =


−1

−2/3

−1/3

1/3


0 0

+1

-1

-1

-2/31/3

-1/3
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Consequences of Limiting Power

Transfers



Line loading limits

You cannot pass infinite current through a transmission line.

As it warms, it sags, then it will become damaged and/or hit a building/tree and cause a

short-circuit. For this reasons there are always thermal limits on current transfer. There may

also be limits on the amount of power or current based on concerns about voltage stability or

general stability.

Typically each line has a well-defined line loading limit on the amount of current or power

that can flow through it:

|fℓ| ≤ Fℓ

where here Fℓ is the maximum power capacity of the transmission line.

These limits prevent the transfer of renewable energy or other power sources.
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Adjusting generator dispatch to avoid overloading

To avoid overloading the power lines, we must adjust our generator output (or the demand) so

that the power imbalances do not overload the network.

We will now generalise and adjust our notation.

From lecture 3 we had for a single node:

−pt = mt − bt + ct = dt −Wwt − Sst − bt + ct = 0

where pt was the nodal power balance, mt was the mismatch (load dt minus wind Wwt and

solar Sst), bt was the backup power and ct was curtailment.

We generalised this to multiple nodes labelled by i

−pi,t = mi,t − bi,t + ci,t = di,t −Wiwi,t − Si si,t − bi,t + ci,t

where now we don’t enforce pi,t = 0 but
∑

i pi,t = 0 for all t.
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Adjusting generator dispatch to avoid overloading

Now we write the dispatch of all generators at node i (wind, solar, backup) labelled by

technology s as gi,s,t (i labels node, s technology and t time) so that we have a relation

between load di,t , generation gi,s,t and network flows fℓ,t

pi,t =
∑
s

gi,s,t − di,t =
∑
ℓ

Kiℓfℓ,t

Where s runs over the wind, solar and backup capacity generators (e.g. hydro or natural gas)

at the node.

A dispatchable generator’s gi,s,t output can be controlled within the limits of its power capacity

Gi,s

0 ≤ gi,s,t ≤ Gi,s
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Variable generation constraints

For a renewable generator we have time series of availability 0 ≤ Gi,s,t ≤ 1 (the st and wt

before; W and S are the capacity Gi,s):

0 ≤ gi,s,t ≤ Gi,s,tGi,s ≤ Gi,s

Curtailment corresponds to the case where gi,s,t < Gi,s,tGi,s :

gi,s,t

Gi,s,tGi,s

Gi,s
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Germany curtailment example

See https://pypsa.readthedocs.io/en/latest/examples/scigrid-lopf-then-pf.html.

53
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European transmission versus backup energy

Consider backup energy in a simplified European grid:

Transmission lines

Country nodes
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DE versus EU backup energy from last time

Germany needed backup generation for 31% of total load:

0 20 40 60 80

Percentage of time during year

100

50

0

50

M
is

m
a
tc

h
 [

G
W

]

backup

curtailment

Europe needed backup generation for only 24% of the total load:
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European transmission versus backup energy

Transmission needs across a fully renewable European power system by Rodriguez,

Becker, Andresen, Heide, Greiner, Renewable Energy, 2014

Cross-border capacities between countries are scaled up by interpolating either from today’s

capacities or from future optimal capacities, thereby reducing the need for balancing energy.
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http://www.sciencedirect.com/science/article/pii/S0960148113005351


Full Power Flow Equations



Goal: Understand the physical origin of these equations

We said we can (in the linear approximation) express the flow fℓ on each line in terms of the

voltage angles θi at the nodes for a line ℓ with reactance xℓ as

fℓ =
θi − θj
xℓ

=
1

xℓ

∑
i

Kiℓθi

This is a relative of Ohm’s Law in DC circuits, I = V1−V2

R .

Now we explain the physics of where this comes from, and the linear approximation that leads

to it.

This is also useful when we consider the synchronisation of oscillators later.
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Alternating Current

The majority of electrical power, including what you get out of a wall plug, is transmitted as

Alternating Current (AC), i.e. both the voltage and current are sinusoidal waves.

[Some power is transmitted as Direct Current (DC) under bodies of water and indeed many

electronic devices require DC (must convert AC to DC).]
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Why alternating current?

Battle of currents! Edison versus Westinghouse/Tesla in late 1880s, early 1890s, etc.

https://en.wikipedia.org/wiki/War of Currents

AC won, because it’s easy to transform AC to a higher voltage, so you can transmit a given

power P = VI with a lower current and thus avoid the I 2R resistive losses in power lines.

Reason: d
dt in E = dΦ

dt ; use a solenoid to induce a fluctuating magnetic field in another

solenoid with a different number of turns, giving different potential difference.

Frequency of 50 Hz is uniform across Europe (except for train-electricity, e.g. in Germany

16.7 Hz). 60 Hz in USA, western half of Japan, etc.
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https://en.wikipedia.org/wiki/War_of_Currents


Frankfurt: Home of Long-Distance AC Transmission

First long-distance high-voltage alternating-current transmission in 1891 from hydroelectric

plant in Lauffen to Frankfurt for the Elektrotechnische Ausstellung (176 km, 15 kV).
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Sinuisoidal waves

The voltage is usually written in terms of the angular frequency ω = 2πf (radians per second)

rather than frequency f (Hertz) and the Root-Mean-Squared (RMS) voltage magnitude Vrms

V (t) = Vpeak sin(ωt) =
√
2Vrms sin(ωt)

Similarly for the current we have

I (t) = Ipeak sin(ωt − φ) =
√
2Irms sin(ωt − φ)

Note that they are not necessarily in phase, φ ̸= 0.

The RMS values are useful because then for the average power with φ = 0 we can forget

factors of 2

⟨P(t)⟩ = ⟨V (t)I (t)⟩ = 2VrmsIrms⟨sin2(ωt)⟩ = VrmsIrms
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Resistive loads

For purely resistive loads, e.g. a kettle or an electric heater, we have

V (t) = RI (t)

and thus for a voltage of V (t) =
√
2Vrmse

jωt (NB: for engineers j =
√
−1 to avoid confusion

with the current i) we have

I (t) =
√
2
Vrms

R
e jωt =

1

R
V (t)

or in terms of the RMS value and phase shift

Irms =
1

R
Vrms

φ = 0
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Resistive loads

In terms of the waveforms, the current has no phase shift from the voltage.

time t

0

V(t)

I(t) = 1
RV(t)
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Capacitive loads

For purely capacitive loads we have

I (t) = C
dV (t)

dt

and thus for a voltage of V (t) =
√
2Vrmse

jωt we get

I (t) =
√
2jωCVrmse

jωt = jωCV (t)

or in terms of the RMS value and phase shift

Irms = ωCVrms

φ = −π

2

We write XC = 1
ωC for the capacitive reactance.
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Capacitive loads

Current peaks before the voltage (it leads the voltage), since first charge must accumulate on

the plates; once the charge is on the plates, the current drops to zero and the voltage peaks.

time t

0

V(t)

I(t) = C dV
dt
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Inductive loads

For purely inductive loads, e.g. a motor during start-up

V (t) = L
dI (t)

dt

and thus for a voltage of V (t) =
√
2Vrmse

jωt we get

I (t) =
√
2
Vrms

jωL
e jωt =

1

jωL
V (t)

or in terms of the RMS value and phase shift

Irms =
1

ωL
Vrms

φ =
π

2

We write XL = ωL for the inductive reactance, in analogy to the resistance.
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Inductive loads

Now current peaks after the voltage (it lags the voltage), since the flow of current in the

solenoid resists the changing voltage.

time t

0

V(t)
I(t) = 1

L Vdt
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General loads

General loads will have a combination of resistive, capacitive and inductive parts. For an RLC

circuit in series the voltage across the components is additive

V (t) = RI (t) + L
dI (t)

dt
+

1

C

∫ t

−infty

I (τ)dτ

and therefore for a sinuisoidal voltage with angular frequency ω we get

V (t) =

[
R + jωL+

1

jωC

]
I (t)

which leads us to define a general complex notion of resistance called impedance

Z = R + jωL+
1

jωC
= R + j(XL − XC ) = R + jX

where X is the reactance X = XL − XC .
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Impedances and admittances

Thus for a regular sinuisodal setup we have

V (t) = ZI (t)

where the complex impedance takes care both of the relation of the RMS values of the

current and the voltage, and their phase difference. We can decompose Z into real resistance

R and real reactance X

Z = R + jX

The inverse impedance, called the admittance is given by

Y =
1

Z

so that

I (t) = YV (t)

We can also decompose this into real conductance G and real susceptance B

Y = G + jB
69



Simple transmission line

A simple model for a transmission line ℓ between nodes i and j is a resistance R in series with

an (inductive) reactance X .

[Typical values are for a 380 kV overhead transmission line e.g. R = 0.03 Ohm/km and

X = 0.3 Ohm/km.]

The voltage at each node (compared to ground) is given by Vi (t) =
√
2Vie

j(ωt+θi ) where θi is

the phase offset for each node and Vi is the RMS voltage magnitude.

Now the current in the transmission line is given by

I (t) =
1

R + jX
[Vj(t)− Vi (t)] =

1

R + jX

√
2Vie

j(ωt+θi )

[
Vj

Vi
e j(θj−θi ) − 1

]
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Active versus reactive power

Now let’s consider the power injection at the first node. This is simply the voltage there

multiplied by the current in the transmission line.

It’s convenient to eliminate the time-dependent part e jωt by multiplying the voltage with the

complex conjugate of the current

S = P + jQ =
1

2
V (t)I ∗(t)

For a resistive load with V (t) = RI (t) this reproduces the active power P.

For loads where the I (t) is not in phase with the voltage, we get a flow of reactive power Q.

S = P + jQ is called the apparent power.
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Linearisation: Assumption 1/3

Now if we consider the power injected at the first node we get

Pi + jQi =
1

R + jX
V 2
i

[
Vj

Vi
e j(θi−θj ) − 1

]
This is the full non-linear equation for the power flow. Now let’s linearise by making some

simplifying assumptions.

1. Assume the voltage magnitudes are the same everywhere in the network Vi = Vj

Pi + jQi =
1

R + jX
V 2
i

[
e j(θi−θj ) − 1

]
This means power flows primarily according to angle differences in this approximation.
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Linearisation: Assumption 2/3

2. Now assume that the voltage angle differences across the transmission line are small enough

that sin(θi − θj) ∼ (θi − θj)

Pi + jQi =
1

R + jX
V 2
i

[
e j(θi−θj ) − 1

]
∼ 1

R + jX
V 2
i [j(θi − θj)]

This assumption is usually valid, since for stability reasons, we usually have in the transmission

network (θi − θj) ≤ π
6 (30 degrees).
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Linearisation: Assumption 3/3

3. Finally we assume R << X so that we can ignore the resistance R

Pi + jQi =
1

R + jX
V 2
i [j(θi − θj)]

∼ 1

jX
V 2
i [j(θi − θj)]

=
V 2
i

X
(θi − θj)

Note that ignoring R means that we ignore resistive losses in the transmission lines and also

since Qi ∼ 0, we ignore the flow of reactive power. Finally we absorb the voltage into the

definition of the per unit reactance xℓ =
X
V 2
i
to get

fℓ = Pi = −Pj =
θi − θj
xℓ
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Three-phase power

Electricity is generally generated simultaneously in 3 separate circuits separate by 120 degrees

or 2π
3

In your plug, you only see one phase, but your oven may use all three phases. 75
Source: Wikipedia



Three-phase power

Why three phases? This was settled in the late 1880s.

1. The total power delivery is constant

d

dt
P(t) =

d

dt
[Pa(t) + Pb(t) + Pc(t)] = 0

This reduces mechanical stress on generators and motors.

2. The sum of voltages and currents is zero, so no return path required! Saving on materials.

Both facts follow from
N−1∑
k=0

e j
2πk
N = 0

for N > 1.

3. Why N = 3 rather than N = 2? Allows directional rotating fields for induction motors

(thanks Tesla!).
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Roots of unity for N = 3

For N = 3, check they add up to zero:
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Source: brilliant.org

https://brilliant.org/wiki/roots-of-unity/


Rotating field in a three-phase induction motor

A brilliant insight (credited to Tesla, but the history is complicated) was that with three-phase

power, you can place your wires spaced at 2π/3 to create a rotating magnetic field

https://www.youtube.com/watch?v=LtJoJBUSe28

which can then induce a current in a rotor cage, which then experiences a torque thanks to the

magnetic field: this is the principle of the induction motor.

It would not be possible to create such a rotating field with a single-phase or two-phase system.
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https://en.wikipedia.org/wiki/Induction_motor#History
https://www.youtube.com/watch?v=LtJoJBUSe28


Three-phase power

79
Source: Wikipedia

https://en.wikipedia.org/wiki/Three-phase_electric_power
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