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Supporting slides to Press Review:

Splitting Germany



Splitting Germany-Austria market zone

See press and research paper links at http://fias.uni-frankfurt.

de/~brown/courses/electricity_markets/

• Scandinavia and Italy are split up

into multiple bidding zones

• On the other hand, Germany and

Austria form a joint bidding zone

• To our knowledge, Sweden was split

following a complaint to the

European Commission from

Denmark that Danish producers

could not export electricity into

Sweden because of internal Swedish

network bottlenecks.
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Source: Ofgem

http://fias.uni-frankfurt.de/~brown/courses/electricity_markets/
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Splitting Germany-Austria market zone

In windy hours Germany also shows price divergence between North and

South when looking at Locational Marginal Prices. Time to split the

Germany-Austria bidding zone so that the market sees the transmission

bottlenecks? Alternative is increasingly expensive redispatch measures...
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Source: PyPSA



Recap of two-node example from last

time



Two-node transmission example

Revisit example from Kirschen and Strbac 6.3.1.2, page 152.

We have two nodes with fixed consumption and differently-priced

producers, connected via a transmission line of limited capacity:

Node 1

QB
1 = 500 MW

C ′1(Q1) = 10 + 0.01Q1

Z1 = Q1 − QB
1

Node 2

QB
2 = 1500 MW

C ′2(Q2) = 13 + 0.02Q2

Z2 = Q2 − QB
2

|F | ≤ K = 400 MW

In addition we can determine the flow between the nodes from the nodal

imbalances Zi :

F = Z1 = −Z2
7



Outcomes for different values of transmission capacity K

K = 0,F = 0,

Q∗1 = 500,Q∗2 = 1500
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Example: Numbers for different values of K

Separate markets Single market Constrained market

QB
1 [MW] 500 500 500

Q1 [MW] 500 1433 900

Z1 [MW] 0 +933 +400

λ1 [e/MWh] 15 24.33 19

QB
2 [MW] 1500 1500 1500

Q2 [MW] 1500 567 1100

Z2 [MW] 0 -933 -400

λ2 [e/MWh] 43 24.33 35

F1→2 [MW] 0 933 400∑
i λi × Qi [e] 72000 48660 55600∑
i λi × QB

i [e] 72000 48660 62000

Congestion rent 0 0 6400
9



Example: Congestion rent for different values of K

The congestion rent for the two-node example is given by

Congestion rent = |λ1 − λ2| × |F |

As a function of K :
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Efficient market operation in a multi-

node system with constrained trans-

mission: KKT



Optimising a multi-node system

We want answers to the following questions:

1. What is the most efficient configuration of production and

consumption when there are transmission constraints between

nodes?

2. How should the market price be set at each node to guarantee that

decentralised actors reach a system-optimal solution?

3. How does this fit in the Karush-Kuhn-Tucker framework?
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Recap of optimisation for a single node

Without transmission we maximised the total economic welfare, the sum

of the consumer and the producer surplus for consumers with

consumption QB
i and generators generating with rate QS

i :

max
{QB

i },{Q
S
i }

[∑
i

Ui (Q
B
i )−

∑
i

Ci (Q
S
i )

]
subject to the supply equalling the demand in the balance constraint:∑

i

QB
i −

∑
i

QS
i = 0 ↔ λ

where λ gave us the market price.

How do we then extend this scheme to multiple nodes with transmission

constraints inbetween?

Answer: Maximise the combined sum of welfare at each node while

implementing transmission constraints.
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Nodal benefit function

Suppose at node k there are some consumers and generators i ∈ Nk ,

with generation QS
i and consumption QB

i .

We define the benefit function Bk(Zk) of node k as follows:

Bk(Zk) = max
{QB

i ,Q
S
i }

[∑
i∈Nk

Ui (Q
B
i )−

∑
i∈Nk

Ci (Q
S
i )

]
where we have introduced a new variable Zk for the total nodal power

imbalance (supply - demand) at the node

Zk −
∑
i∈Nk

QS
i +

∑
i∈Nk

QB
i = 0 ↔ λk

The optimisation of the benefit function Bk(Zk) yields the optimal

dispatch for the consumers and generators at node k under the constraint

that this dispatch leads to a net injection Zk at this node.

The parameter λk gives the change in the objective function when we

relax the respective constraint - i.e. the marginal price at this node.
14



Full optimisation problem

Note: the values of the Zk are not yet fixed by the scheme. Now we fix

the values by maximising total economic welfare given constraints for the

nodal injections (determined by the transmission constraints):

max
{Zk}

[∑
k

Bk(Zk)

]
subject to ∑

k

Zk = 0 ↔ λ

h`({Zk}) ≤ d` ↔ µ`

with

Bk(Zk) = max
{QB

i ,Q
S
i }

[∑
i∈Nk

Ui (Q
B
i )−

∑
i∈Nk

Ci (Q
S
i )

]
subject to Zk −

∑
i∈Nk

QS
i +

∑
i∈Nk

QB
i = 0 ↔ λk
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Optimal dispatch for two-nodes

We now return to our two-node example. We have a flow on the single

transmission line F = Z1 = −Z2 restricted by |F | ≤ K .

The optimal dispatch is given by

max
{Z1,Z2}

[B1(Z1) + B2(Z2)]

subject to Z1 + Z2 = 0 ↔ λ

subject to Z1 ≤ K ↔ µ̄

subject to − Z1 ≤ K ↔ µ
¯

with

Bk(Zk) = max
{QB

i ,Q
S
i }

[∑
i∈Nk

Ui (Q
B
i )−

∑
i∈Nk

Ci (Q
S
i )

]
subject to Zk −

∑
i∈Nk

QS
i +

∑
i∈Nk

QB
i = 0 ↔ λk
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KKT analysis

Considering the single total optimisation over all variables QB
i ,Q

S
i ,Zk ,

we get from stationarity

∂L
dQB

i

⇒ U ′i (Q
B
i )− λk = 0

∂L
dQS

i

⇒ −C ′i (QS
i ) + λk = 0

∂L
dZ1
⇒ +λ− λ1 − µ̄+ µ

¯
= 0

∂L
dZ2
⇒ +λ− λ2 = 0

and from complementary slackness:

µ̄(K − Z1) = 0

µ
¯

(K + Z1) = 0
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Our three cases

For a solution where typically λ∗2 ≥ λ∗1 we have:

For the separate markets (K = 0):

F = Z∗1 = −Z∗2 = 0, λ∗1 6= λ∗2 , µ̄
∗ = λ∗2 − λ∗1 , µ

¯

∗ = 0

For the constrained markets (K = 400):

F = Z∗1 = −Z∗2 = 400, λ∗1 6= λ∗2 , µ̄
∗ = λ∗2 − λ∗1 , µ

¯

∗ = 0

For the unconstrained markets (K =∞):

F = Z∗1 = −Z∗2 = 933, λ∗1 = λ∗2 , µ̄
∗ = 0, µ

¯

∗ = 0
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Beyond two nodes: radial networks

In a radial network there is only one path between any two nodes on the

network.

The power flow is a simple function of the nodal power imbalances.
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Source: Biggar & Hesamzadeh



Beyond two nodes: meshed networks

In a meshed network there are at least two nodes with multiple paths

between them.

The power flow is now a function of the impedances in the network.
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Source: Biggar & Hesamzadeh



Long-run efficiency: Investment in

Generation



Definition of long-run efficiency

Up until now we have considered short-run equilibria that ensure

short-run efficiency (static), i.e. they make the best use of presently

available productive resources.

Long-run efficiency (dynamic) requires in addition the optimal investment

in productive capacity.

Concretely: given a set of options and constraints for different generators

(nuclear/gas/wind/solar) what is the optimal generation portfolio for

maximising long-run welfare?

From an indivdual generators’ perspective: how best should I invest in

extra capacity?

We will show again that with perfect competition and no barriers to

entry, the system-optimal situation can be reached by individuals

following their own profit.
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Simple example: Single generator type with downward

sloping demand

Consider the long-run efficiency of a market with a single generator type

with linear cost function and downward-sloping demand (taken from

Biggar-Hesamzadeh pages 21 and 183).

We have to consider marginal costs arising from each unit of production

Q and capital costs that arise from fixed costs regardless of the rate of

production (such as the investment in building capacity K ).

For a given production rate Q and capacity K we have in this simple

example a cost

C (Q,K ) = cQ + fK

with 0 ≤ Q ≤ K , where C (Q,K ) has units e/h, c has units e/MWh, Q

and K have units MW and f has units e/MW/h (‘hourised’ capital cost).

Note again: the term fK is constant regardless of production rate Q.
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Can’t just consider just one load situation

Up until now, in our considerations of short-run efficiency, we’ve

considered just a single demand situation.

Now that we’re considering long-term investment, we have to consider

many or even all demand situations.
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We consider many different utility curves Ut(Q) for different times t,

each of which occurs with probability pt > 0,
∑

pt = 1.
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Simple example: Consumer with downward sloping

demand

Suppose the generators have a marginal cost of c =40 e/MWh and the

downward-sloping demand fluctuates over time.

If total generation capacity is always below demand, the demand will set

the price at MCB (Marginal Consumer Benefit) and the generators will

always earn above their Marginal Generation Cost (MGC):
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But then why don’t they build more capacity to make even more profit? 25



Simple example: Consumer with downward sloping

demand

If sometimes the price is set by MCB and sometimes by the MGC then

the generators might still earn enough to cover their capital costs:
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Simple example: Consumer with downward sloping

demand

If generation capacity is so large that it can always cover the demand,

regardless of the MCB, then generators will never earn enough money to

regain their capital costs, because the price will always be set by the

marginal generation cost:
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Simple example: optimisation problem

Now consider the maximisation of long-run welfare, including the capital

costs:

max
{QB

t },{QS
t },K

∑
t

pt
[
Ut(Q

B
t )− C (QS

t ,K )
]

i.e. with cost C (Q,K ) = cQ + fK we optimise

max
{QB

t },{QS
t },K

∑
t

pt
[
Ut(Q

B
t )− (cQS

t + fK )
]

given

QB
t − QS

t = 0 ↔ ptλt ∀t
−QS

t ≤ 0 ↔ ptµ
¯t

∀t

QS
t ≤ K ↔ pt µ̄t ∀t

(We have taken the liberty to multiply the KKT multipliers by a constant

pt > 0, to make the resulting equations easier to read.)
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Simple example: KKT

From stationarity we get:

∂L
∂QB

t

⇒ ptU
′
t(Q

B
t )− ptλt = 0

∂L
∂QS

t

⇒ −ptc + ptλt + ptµ
¯t
− pt µ̄t = 0

∂L
∂K
⇒ −f +

∑
t

pt µ̄t = 0

From primal feasibility we get QB
t = QS

t = Q∗t and from complementary

slackness we have µ
¯

∗
t

= 0, assuming the demand is always positive, and

µ̄∗t ≥ 0. Thus we get

λ∗t = U ′t(Q
∗
t )

λ∗t = c + µ̄∗t

f =
∑
t

pt µ̄
∗
t
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Simple example: KKT interpretation

We have

λ∗t = U ′t(Q
∗
t )

λ∗t = c + µ̄∗t

f =
∑
t

pt µ̄
∗
t

So µ̄∗t is the difference between the Marginal Generation Cost (MGC) c

and the Marginal Consumer Benefit (MCB) U ′t(Q
∗
t ).

If the constraint Qt ≤ K is binding, then µ̄∗t ≥ 0.

The optimal investment level happens when the average value of µ̄∗t ,∑
t pt µ̄

∗
t , is equal to the capital cost f .
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Different types of generators



Different types of generators

Fuel/Prime Marginal Capital Controllable Predictable CO2

mover cost cost days ahead

Oil V. High Low Yes Yes Medium

Gas OCGT High Low Yes Yes Medium

Gas CCGT Medium Medium Yes Yes Medium

Hard Coal Medium Lowish Yes Yes High

Brown Coal Low Medium Yes Yes High

Nuclear V. Low High Partly Yes Zero

Hydro dam Zero High Yes Yes Zero

Wind/Solar Zero High Down No Zero
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Copyright

Unless otherwise stated the graphics and text is Copyright c©Tom Brown

and Mirko Schäfer, 2016.

We hope the graphics borrowed from others have been attributed

correctly; if not, drop a line to the authors and we will correct this.

The source LATEX, self-made graphics and Python code used to generate

the self-made graphics are available on the course website:

http://fias.uni-frankfurt.de/~brown/courses/electricity_

markets/

The graphics and text for which no other attribution are given are

licensed under a Creative Commons Attribution-ShareAlike 4.0

International License.

cba

33

http://fias.uni-frankfurt.de/~brown/courses/electricity_markets/
http://fias.uni-frankfurt.de/~brown/courses/electricity_markets/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

	Supporting slides to Press Review: Splitting Germany
	Recap of two-node example from last time
	Efficient market operation in a multi-node system with constrained transmission: KKT
	Long-run efficiency: Investment in Generation
	Different types of generators

