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Short-run efficient operation of elec-

tricity markets



Consumers and generators

Consumers: Their utility or value function U(Q) in e/h is a measure of

their benefit for a given consumption rate Q. For a given price λ they

adjust their consumption rate Q such that their net surplus is maximised:

max
Q

[U(Q)− λQ]

Generators: A generator has a cost or supply function C (Q) in e/h,

which gives the costs (of fuel, etc.) for a given rate of electricity

generation Q MW. If the market price is λ e/MWh, the revenue is λQ

and the generator should adjust their generation rate Q to maximise their

net generation surplus, i.e. their profit:

max
Q

[λQ − C (Q)]
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Setting the quantity and price

Total welfare (consumer and generator surplus) is maximised if the total

quantity is set where the marginal cost and marginal utility curves meet.

If the price is also set from this point, then the individual optimal actions

of each actor will achieve this result in a perfect decentralised market.
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The result of optimisation

This is the result of maximising the total economic welfare, the sum of

the consumer and the producer surplus for consumers with consumption

QB
i and generators generating with rate QS

i :

max
{QB

i },{Q
S
i }

[∑
i

Ui (Q
B
i )−

∑
i

Ci (Q
S
i )

]

subject to the supply equalling the demand in the balance constraint:∑
i

QB
i −

∑
i

QS
i = 0 ↔ λ

and any other constraints (e.g. limits on generator capacity, etc.).

Market price λ is the shadow price of the balance constraint, i.e. the cost

of supply an extra increment 1 MW, or reduce generation by an

increment of 1 MW.
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Limits of this model

Consumers: How do they participate in the market? Role of retail?

Demand side management? ”Prosumers”?

Generators: Ramp-rates? Startup costs?

Markets: How to balance supply and demand at all times? Time

structure of different markets? Managing risk? Market coupling? Role of

the market operator?

Long-term decisions: Investment decisions of consumers and

generators? Regulation?

Market power

Transmission: Network constraints? Role of the system operator?

Transmission expansion?
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General constrained optimisation

theory: Lagrangians and Karush-

Kuhn-Tucker conditions



Optimisation problem

We have an objective function f : Rk → R

max
x

f (x)

[x = (x1, . . . xk)] subject to some constraints within Rk :

gi (x) = ci ↔ λi i = 1, . . . n

hj(x) ≤ dj ↔ µj j = 1, . . .m

λi and µj are the KKT ‘Lagrange’ multipliers we introduce for each

constraint equation; it measures the change in the objective value of the

optimal solution obtained by relaxing the constraint (shadow price).
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KKT conditions

The Karush-Kuhn-Tucker (KKT) conditions are necessary conditions that

an optimal solution x∗, µ∗, λ∗ always satisfies (up to some regularity

conditions):

1. Stationarity: For l = 1, . . . k

∂f

∂xl
−
∑
i

λ∗i
∂gi
∂xl
−
∑
j

µ∗j
∂hj
∂xl

= 0

2. Primal feasibility:

gi (x
∗) = ci

hj(x
∗) ≤ dj

3. Dual feasibility: µ∗j ≥ 0

4. Complementary slackness: µ∗j (hj(x
∗)− dj) = 0
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Complementarity slackness for inequality constraints

We have for each inequality constraint

µ∗j ≥ 0

µ∗j (hj(x
∗)− dj) = 0

So either the inequality constraint is binding

hj(x
∗) = dj

and we have µ∗j ≥ 0.

Or the inequality constraint is NOT binding

hj(x
∗) < dj

and we therefore MUST have µ∗j = 0.

If the inequality constraint is non-binding, we can remove it from the

optimisation problem, since it has no effect on the optimal solution.
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Example: Two generators, fixed demand

Suppose marginal costs c1 = 10 e/MWh, c2 = 30 e/MWh, fixed

demand QB , generation limits Q̂1 = 300 MW, Q̂2 = 400 MW.

What is the optimal power plant dispatch, i.e. what values of Q1,Q2

maximise efficiency?
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Example: Two generators with fixed demand

Demand QB = 200 MW. The optimal dispatch is Q∗1 = 200 MW < Q̂1

and Q∗2 = 0 < Q̂2.
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Example: Two generators with fixed demand

Demand QB = 500 MW.

The optimal dispatch is Q∗1 = 300 MW = Q̂1 and Q∗2 = 200 MW < Q̂2.
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KKT: Application to 2-generator example with fixed

demand

Our optimisation variables are {x} = {Q1,Q2} with objective function

max
Q1,Q2

f (Q1,Q2) = −c1 · Q1 − c2 · Q2

subject to one equality and four inequality constraints:

QB − Q1 − Q2 = 0 ↔ λ

Q1 ≤ Q̂1 ↔ µ̄1

Q2 ≤ Q̂2 ↔ µ̄2

−Q1 ≤ 0 ↔ µ
¯1

−Q2 ≤ 0 ↔ µ
¯2
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KKT: Application to 2-generator example with fixed

demand

Stationarity:

−c1 + λ∗ − µ̄∗1 + µ
¯

∗
1

= 0

−c2 + λ∗ − µ̄∗2 + µ
¯

∗
2

= 0

Primal feasibility:

QB − Q∗1 − Q∗2 = 0

0 ≤ Ql ≤ Q̂∗l ∀l ∈ 1, 2

Dual feasibility and complementary slackness:

µ̄∗l ≥ 0 ∀l ∈ 1, 2

µ
¯

∗
l
≥ 0 ∀l ∈ 1, 2

µ̄∗l (Q∗l − Q̂l) = 0 ∀l ∈ 1, 2

µ
¯

∗
l
(−Q∗l ) = 0 ∀l ∈ 1, 2
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KKT: Application to the example

Stationarity:

−10 e/MWh + λ∗ − µ̄∗1 + µ
¯

∗
1

= 0

−30 e/MWh + λ∗ − µ̄∗2 + µ
¯

∗
2

= 0

Primal feasibility:

QB − Q∗1 − Q∗2 = 0

0 ≤ Q∗1 ≤ 300 MW

0 ≤ Q∗2 ≤ 400 MW

Dual feasibility and complementary slackness:

µ̄∗1 ≥ 0 , µ
¯

∗
1
≥ 0 , µ̄∗2 ≥ 0 , µ

¯

∗
2
≥ 0

µ̄∗1(Q∗1 − 300 MW) = 0 , µ̄∗2(Q∗2 − 400 MW) = 0

µ
¯

∗
1
(−Q∗1 ) = 0 , µ

¯

∗
2
(−Q∗2 ) = 0
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Application to the example, QB = 200 MW

Stationarity shows that µ∗l 6= 0 for some j .

From QB < Q̂1 and QB < Q̂2 it follows that µ̄∗1 = 0 and µ̄∗2 = 0.

We observe that from µ
¯

∗
1
6= 0 it follows Q∗1 = 0, and from µ

¯

∗
2
6= 0 it

follows Q∗2 = 0. From the primal feasibility constraint it follows that

either Q∗1 > 0 or Q∗2 >, so either µ
¯

∗
1

= 0 or µ
¯

∗
2

= 0.

If we substract the second stationarity equation from the first one, we

obtain with µ̄∗1 = µ̄∗2 = 0

20 e/MWh + µ
¯

∗
1
− µ

¯

∗
2

= 0

From the dual feasibility it follows that µ
¯

∗
1

= 0 and µ
¯

∗
2

= 20 e/MWh.

Using the first stationarity equation we get λ∗ = 10 e/MWh.
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Application to the example, QB = 500 MW

Stationarity shows that µ∗l 6= 0 for some l .

From the primal feasibility constraint it follows that both Q∗1 > 0 and

Q∗2 > 0, so both µ
¯

∗
1

= 0 and µ
¯

∗
2

= 0.

From µ̄∗1 6= 0 it follows Q∗1 = 300 MW, from µ̄∗2 6= 0 it follows

Q∗2 = 400 MW. Due to primal feasibility thus either µ̄∗1 = 0 or µ̄∗2 = 0.

If we substract the second stationarity equation from the first one, we

obtain with µ
¯

∗
1

= µ
¯

∗
2

= 0

20 e/MWh + µ̄∗2 − µ̄∗1 = 0

From the primal feasibility it follows that µ̄∗2 = 0 and µ̄∗1 = 20 e/MWh.

Using the first stationarity equation we get λ∗ = 30 e/MWh.
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Example: N generators, fixed demand

Suppose marginal costs cl and generation limits Q̂l , and assume a total

fixed demand QB .

What is the optimal power plant dispatch, i.e. what values of Ql

maximise efficiency?
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KKT: Application to N generators, fixed demand

Our optimisation variables are {x} = {Q1, . . . ,QN} with objective

function

max
Q1,...,QN

f (Q1, . . . ,QN) = −
N∑
l=1

cl · Ql

subject to one equality and 2N inequality constraints:

g(Ql) = QD −
N∑
l=1

Ql = 0 ↔ λ

h̄l(Ql) = Ql ≤ Q̂l = d̄l ↔ µ̄l

h
¯l(Ql) = −Ql ≤ 0 = d

¯ l ↔ µ
¯l
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KKT: Application to N generators, fixed demand

Stationarity:

−cl + λ∗ − µ̄l + µ
¯l

= 0 ∀l ∈ 1, . . . ,N

Primal feasibility:

Q −
∑
l

Q∗l = 0

0 ≤ Ql ≤ Q̂∗l ∀l ∈ 1, . . . ,N

Dual feasibility and complementary slackness:

µ̄∗l ≥ 0 ∀l ∈ 1, . . . ,N

µ
¯

∗
l
≥ 0 ∀l ∈ 1, . . . ,N

µ̄∗l (Q∗l − Q̂l) = 0 ∀l ∈ 1, . . . ,N

µ
¯

∗
l
(−Q∗l ) = 0 ∀l ∈ 1, . . . ,N
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A remark on the parameter λ

In the KKT formalism for efficient short term market operation, the

parameter λ gives the relative change of the objective function for the

optimal solution, when we relax the balancing condition∑
l

QB
l −

∑
l

QS
l = 0 .

The parameter λ∗ as the shadow price of this constraint is interpreted as

the market price (competitive price).

There is a little ambiguity about the marginal cost, when the supply and

demand curves don’t intersect, and the constraints determine the value

λ∗.
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A remark on the parameter λ

Consider a consumer with utility function uQB , and a generator with cost

function cQS , and assume u > c . Furthermore assume that the

consumption is limited by Q̂B , and generation is limited by Q̂S .

The objective function is

f (QB ,QS) = uQB − cQS ,

with the balancing condition

QB − QS = 0 .

The constraints are

0 ≤ QB ≤ Q̂B , 0 ≤ QS ≤ Q̂S .
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A remark on the parameter λ

Running KKT on this problem gives the following result:

Q̂S > Q̂B : Optimal solution is Q∗S = Q∗B = Q̂B , with the competitive

λ∗ = c . Relaxing the balancing constraint would allow the generator to

reduce the generation, and thus the relative cost by c , while the demand

is still Q̂B . Lowering the demand would not increase the objective

function, while increasing it is not possible due to the constraint.

Q̂B > Q̂S : Optimal solution is Q∗B = Q∗s = Q̂S , with the competitive

price λ∗ = u. Relaxing the balancing constraint would allow the

consumer to increase the consumption, and thus the relative utility by u,

while the generation is still Q̂S . Increasing the generation would not

increase the objective function, while reducing it gives a smaller increase

in the objective function than increasing the demand.
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A remark on the parameter λ

But does this give the right competitive price? Interpreting the supply

and demand curves as aggregates, we can understand the situation as

follows:

In the first case a supplier could raise the price above its marginal cost c .

But since QS > Q̂S , another generator would immediately jump in and

fulfill the demand at the price c , so this is the competitive price.

Would the competitive price be less than u in the second case, due to

QB < Q̂B there always will be a consumer willing to pay u to satisfy his

demand, so this is the competitive price.

For a discussion of this point see Chapter 1.6 in the book Power System

Economics by Steven Stoft.
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Transmission and distribution net-

works



Transmission and distribution networks

Electricity usually is not consumed where it is produced, so it has to be

transported via transmission and distribution networks.

Transmission networks: Transport large volumes of electric power over

relatively long distances.

Distribution networks: Take power from the transmission network and

deliver it to a large number of end points in a certain geographic area.
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Transmission and distribution networks
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European Transmission Grid

30

Source: ENTSO-E



Transmission and distribution networks in Germany

Das deutsche Strom-Verteilernetz ist 
rund 1,7 Millionen Kilometer lang 

Niederspannungsnetz: 
ca. 1.100.000 Kilometer

Verteilernetz Übertragungsnetz

Mittelspannungsnetz: 
ca. 510.000 Kilometer

Hochspannungsnetz: 
ca. 95.000 Kilometer

Höchstspannungsnetz: 
ca. 35.000 Kilometer
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Transmission and distribution networks in Germany
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TSOs in Germany

33

Source: Wikipedia (Francis McLloyd)



Transmission grid near Frankfurt
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Power grids and electricity markets

The (physical) balancing of supply and demand has to respect the

network constraints of the system. These constraints have to be

implemented by the system operator, but to some extent can also be

included into the market design.

Transmission and distribution networks are (almost?) natural monopolies,

which leads to substantial market power. These networks are typically

state owned, cooperatives or heavily regulated (many interesting

problems with respect to incentives, tariffs, etc.).

Network expansion is part of the long-term efficient operation of the

system.
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Unless otherwise stated the graphics and text is Copyright c©Tom Brown

and Mirko Schäfer, 2016.

We hope the graphics borrowed from others have been attributed

correctly; if not, drop a line to the authors and we will correct this.

The source LATEX, self-made graphics and Python code used to generate

the self-made graphics are available on the course website:

http://fias.uni-frankfurt.de/~brown/courses/electricity_

markets/

The graphics and text for which no other attribution are given are

licensed under a Creative Commons Attribution-ShareAlike 4.0

International License.
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