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Short-run Efficient Operation of Elec-

tricity Markets



Efficient Markets for the short-run

Assume investments already made in generators and and consumption

assets (factories, machines, etc.).

Assume all actors are price takers (i.e. nobody can exercise market

power) and we have perfect competition.

How do we allocate production and consumption in the most efficient

way?

I.e. we are interested in the short-run “static” efficiency.
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Electricity Markets from the Con-

sumer Perspective



Consumer behaviour: Theory

Suppose for some given period a consumer consumes electricity at a rate

of Q MW.

Their utility or value function U(Q) in e/h is a measure of their benefit

for a given consumption rate Q.

For a firm this could be the profit related to this electricity consumption

from manufacturing goods.

Typical the consumer has a higher utility for higher Q, i.e. the first

derivative is positive U ′(Q) > 0. By assumption, the rate of value

increase with consumption decreases the higher the rate of consumption,

i.e. U ′′(Q) < 0.
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Utility: Example

A widget manufacturer has a utility function which depends on the rate

of electricity consumption Q [e/h] as

U(Q) = 0.0667 Q3 − 8 Q2 + 300 Q
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Note that the slope is always positive, but becomes less positive for

increasing Q.
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Optimal consumer behaviour

We assume to begin with that the consumer is a price-taker, i.e. they

cannot influence the price by changing the amount they consume.

Suppose the market price is λ e/MWh. The consumer should adjust

their consumption rate Q to maximise their net surplus

max
Q

[U(Q)− λQ]

This optimisation problem is optimised for Q = Q∗ where

U ′(Q∗) ≡ dU

dQ
(Q∗) = λ

[Check units: dU
dQ has units e/hMW = e/MWh.]

I.e. the consumer increases their consumption until they make a net loss

for any increase of consumption.

U ′(Q) is known as the inverse demand curve or marginal utility curve,

which shows, for each rate of consumption Q what price λ the consumer

should be willing to pay. 8



Inverse demand function: Example

For our example the inverse demand function is given by

U ′(Q) = 0.2 Q2 − 16 Q + 300
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It’s called the inverse demand function, because the demand function is

the function you get from reversing the axes.
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Inverse demand function: Example

The demand function D(λ) gives the demand Q as a function of the

price λ. D(U ′(Q)) = Q.

For our example the demand function is given by

D(λ) = −((λ+ 20)/0.2)0.5 + 40
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Gross consumer surplus

The area under the inverse demand curve is the gross consumer surplus,

which as the integral of a derivative, just gives the utility function U(Q)

again, up to a constant.
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Net consumer surplus

The more relevant net consumer surplus, or just consumer surplus is the

net gain the consumer makes by having utility above the electricity price.
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Limits to consumption

Note that it is quite common for consumption to be limited by other

factors before the electricity price becomes too expensive, e.g. due to the

size of electrical machinery. This gives an upper bound

Q ≤ Qmax

In the following case the optimal consumption is at Q∗ = Qmax =

10 MW. We have a binding constraint and can define a shadow price µ,

which indicates the benefit of relaxing the constraint µ∗ = U ′(Q∗)− λ.
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Consumers can delay their consumption

Besides changing the amount of electricity consumption, consumers can

also shift their consumption in time.

For example electric storage heaters use cheap electricity at night to

generate heat and then store it for daytime.

The LHC particle accelerator does not run in the winter, when prices are

higher (see http://home.cern/about/engineering/powering-cern).

Summer demand: 200 MW, corresponds to a third of Geneva, equal to

peak demand of Rwanda (!); winter only 80 MW.
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Source: CERN
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Consumers can also move location

Aluminium smelting is an electricity-intensive process. Aluminium

smelters will often move to locations with cheap and stable electricity

supplies, such as countries with lots of hydroelectric power. For example,

73% of Iceland’s total power consumption in 2010 came from aluminium

smelting.

Aluminium costs around US$ 1500/ tonne to produce.

Electricity consumption: 15 MWh/tonne.

At Germany consumer price of e300 / MWh, this is e4500 / tonne.

Uh-oh!!!

If electricity is 50% of cost, then need $750/tonne to go on electricity ⇒
750/15 $/MWh = 50 $/MWh.
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Electricity Markets from the Genera-

tor Perspective



Generator Cost Function

Optimal generator behaviour follows a similar schema to that for

consumers.

A generator has a cost or supply function C (Q) in e/h, which gives the

costs (of fuel, etc.) for a given rate of electricity generation Q MW.

Typical the generator has a higher cost for a higher rate of generation Q,

i.e. the first derivative is positive C ′(Q) > 0. For most generators the

rate at which cost increases with rate of production itself increases as the

rate of production increases, i.e. C ′′(Q) > 0.
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Cost Function: Example

A gas generator has a cost function which depends on the rate of

electricity generation Q [e/h] according to

C (Q) = 0.005 Q2 + 9.3 Q + 120
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Note that the slope is always positive and becomes more positive for

increasing Q. The curve does not start at the origin because of startup

costs, no load costs, etc.
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Real Example: California Day Ahead (DA) Market

Generators in California provide supply curves to the market operator as a

piecewise linear function with ten segments:
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Optimal generator behaviour

We assume to begin with that the generator is a price-taker, i.e. they

cannot influence the price by changing the amount they generate.

Suppose the market price is λ e/MWh. For a generation rate Q, the

revenue is λQ and the generator should adjust their generation rate Q to

maximise their net generation surplus, i.e. their profit:

max
Q

[λQ − C (Q)]

This optimisation problem is optimised for Q = Q∗ where

C ′(Q∗) ≡ dC

dQ
(Q∗) = λ

[Check units: dC
dQ has units e/hMW = e/MWh.]

I.e. the generator increases their output until they make a net loss for

any increase of generation.

C ′(Q) is known as the marginal cost curve, which shows, for each rate of

generation Q what price λ the generator should be willing to supply at. 20



Marginal cost function: Example

For our example the marginal function is given by

C ′(Q) = 0.001 Q + 9.3
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Generator surplus

The area under the curve is generator costs, which as the integral of a

derivative, just gives the cost function C (Q) again, up to a constant.

The generator surplus is the profit the generator makes by having costs

below the electricity price.
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Limits to generation

Note that it is quite common for generators to be limited by e.g. their

capacity, which may become a binding, i.e. limiting factor before the

price plays a role, e.g.

Q ≤ Qmax

In the following case the optimal generation is at Q∗ = Qmax =

250 MW. We have a binding constraint and can define a shadow price µ,

which indicates the benefit of relaxing the constraint µ∗ = λ− C ′(Q∗).

0 100 200 300 400 500

Electricity generator rate Q [MW]

0

5

10

15

20

M
a
rg

in
a
l 
co

st
 f

u
n
ct

io
n
 C

′ (Q
) 

[
/M

W
h
]

electricity price

generator surplus

costs

23



Putting generators and consumers

together



Spoiler: Setting the quantity and price

Total welfare (consumer and generator surplus) is maximised if the total

quantity is set where the marginal cost and marginal utility curves meet.

If the price is also set from this point, then the individual optimal actions

of each actor will achieve this result in a perfect decentralised market.
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Spoiler: The result of optimisation

This is the result of maximising the total economic welfare, the sum of

the consumer and the producer surplus for consumers with consumption

QB
i and generators generating with rate QS

i :

max
{QB

i },{Q
S
i }

[∑
i

Ui (Q
B
i )−

∑
i

Ci (Q
S
i )

]

subject to the supply equalling the demand in the balance constraint:∑
i

QB
i −

∑
i

QS
i = 0 ↔ λ

and any other constraints (e.g. limits on generator capacity, etc.).

Market price λ is the shadow price of the balance constraint, i.e. the cost

of supply an extra increment 1 MW of demand.
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Why decentralised markets work (in theory)

We will now show our main result:

Welfare-maximisation through decentralised markets

The welfare-maximising combination of production and consumption can

be achieved by the decentralised profit-maximising decisions of producers

and the utility-maximising decisions of consumers, provided that:

• The market price is equal to the constraint marginal value of the

overall supply-balance constraint in the welfare maximisation

problem

• All producers and consumers are price-takers
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Supply-demand example: Generator bids

Example from Kirschen and Strbac pages 56-58.

The following generators bid into the market for the hour between 0900

and 1000 on 20th April 2016:

Company Quantity [MW] Price [$/MWh]

Red 200 12

Red 50 15

Red 150 20

Green 150 16

Green 50 17

Blue 100 13

Blue 50 18
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Supply-demand example: Consumer offers

The following consumers make offers for the same period:

Company Quantity [MW] Price [$/MWh]

Yellow 50 13

Yellow 100 23

Purple 50 11

Purple 150 22

Orange 50 10

Orange 200 25
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Supply-demand example: Curve

If the bids and offers are stacked up in order, the supply and demand

curves meet with a demand of 450 MW at a system marginal price of

λ = 16 $/MWh.

30
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Supply-demand example: Revenue and Expenses

Dispatch and revenue/expense of each company:

Company Production Consumption Revenue Expense

[MWh] [MWh] [$] [$]

Red 250 4000

Blue 100 1600

Green 100 1600

Orange 200 3200

Yellow 100 1600

Purple 150 2400

Total 450 450 7200 7200
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Several generators with fixed demand

Consider a simplified situation where we have just two generators 1 and 2

which have to meet a fixed demand Q (could be e.g. many consumers

with inelastic demand and inverse demand curve much higher than the

generation costs, i.e. U(Q) = d · Q where d >> ci ).

They have generation rate Q1 and Q2 respectively, so that we have

Q = Q1 + Q2

The generators have simple linear cost functions

C1(Q1) = c1 · Q1

C2(Q2) = c2 · Q2

where we assume c1 < c2. The dispatch must be positive, but below the

capacity:

0 ≤ Q1 ≤ Q̂1

0 ≤ Q2 ≤ Q̂2
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Several generators with fixed demand

What is the most efficient dispatch of the two generators?

We want to maximise the total economic welfare, which is the sum of

generator and consumer surplus. For this example, we have no control of

the consumer side, so we must seek to maximise the generator surplus.

This is equivalent to minimising the costs. We can write an optimisation

problem with objective function:

max
Q1,Q2

f (Q1,Q2) = −c1 · Q1 − c2 · Q2

subject to one equality and four inequality constraints:

Q − Q1 − Q2 = 0

0 ≤ Q1 ≤ Q̂1

0 ≤ Q2 ≤ Q̂2
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Several generators with fixed demand: Example 1

Suppose c1 = 10 e/MWh, c2 = 30 e/MWh, Q = 200 MW, Q̂1 = 300

MW, Q̂2 = 400 MW.

What is the optimal power plant dispatch, i.e. what values of Q1,Q2

maximise efficiency?

Answer is clear: supply all of the demand with the cheapest generator 1.

The optimal dispatch is Q∗1 = 200 < Q̂1 and Q∗2 = 0 < Q̂2.

In this example the inequalities for generator 1 are non-binding.
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Equality Constraints and Shadow Prices

We have an equality constraint:

Q − Q1 − Q2 = 0

We can ask: what is the change in the objective function, i.e. the

increase in total cost, if we increase the load Q by one unit?

In this case, the extra load would be supplied by generator 1, which still

has capacity, so the shadow price of the balance constraint is λ∗ = c1.
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Several generators with fixed demand: Example 2

Suppose now we raise the load to Q = 500 MW. What values of Q1,Q2

maximise efficiency? Answer is clear: max out cheapest generator 1, then

supply the remaining demand with the more expensive generator 2.

The optimal dispatch is Q∗1 = 300 = Q̂1 and Q∗2 = 200 < Q̂2.

The balance constraint here has a shadow price of λ∗ = c2.

In this example the inequality for generator 1 is binding but the inequality

for generator 2 is non-binding.
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Binding Inequality Constraints and Shadow Prices

If we associate shadow prices µi with the four generation inequality

constraints

Q1 ≤ Q̂1 ↔ µ1

Q2 ≤ Q̂2 ↔ µ2

−Q1 ≤ 0̂ ↔ µ3

−Q2 ≤ 0̂ ↔ µ4

Then we can ask: what is the change in the objective function if we relax

the first constraint, i.e. allow one more unit of capacity Q̂1 for generator

1.

We substitute generation from generator 2 with generation from

generator 1, thus increasing total welfare by

µ∗1 = c2 − c1

Of course this would have to be balanced against the capital costs of the

addition of capacity to generator 1.
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General constrained optimisation

theory: Lagrangians and Karush-

Kuhn-Tucker conditions



Optimisation problem

We have an objective function f : Rk → R

max
x

f (x)

[x = (x1, . . . xk)] subject to some constraints within Rk :

gi (x) = ci ↔ λi i = 1, . . . n

hj(x) ≤ dj ↔ µj j = 1, . . .m

λi and µj are the KKT ‘Lagrange’ multipliers we introduce for each

constraint equation; their meaning and interpretation will be explained in

the next slide.
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Lagrangian

We now study the Lagrangian function

L(x , λ, µ) = f (x)−
∑
i

λi [gi (x)− ci ]−
∑
j

µj [hj(x)− dj ]

We’ve built this function using the variables λi and µj to better

understand the optimal solution of f (x) given the constraints.

The optima of L(x , λ, µ) tell us important information about the optima

of f (x) given the constraints.

We can already see that if ∂L
∂λi

= 0 then the equality constraint gi (x) = c

will be satisfied.

[Beware: ± signs appear differently in literature, but have been chosen

here such that λi = ∂L
∂ci

and µj = ∂L
∂dj

.]
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KKT conditions

The Karush-Kuhn-Tucker (KKT) conditions are necessary conditions that

an optimal solution x∗, µ∗, λ∗ always satisfies (up to some regularity

conditions):

1. Stationarity: For l = 1, . . . k

∂L
∂xl

=
∂f

∂xl
−
∑
i

λ∗i
∂gi
∂xl
−
∑
j

µ∗j
∂hj
∂xl

= 0

2. Primal feasibility:

gi (x
∗) = ci

hj(x
∗) ≤ dj

3. Dual feasibility: µ∗j ≥ 0

4. Complementary slackness: µ∗j (hj(x
∗)− dj) = 0
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Complementarity slackness for inequality constraints

We have for each inequality constraint

µ∗j ≥ 0

µ∗j (hj(x
∗)− dj) = 0

So either the inequality constraint is binding

hj(x
∗) = dj

and we have µ∗j ≥ 0.

Or the inequality constraint is NOT binding

hj(x
∗) < dj

and we therefore MUST have µ∗j = 0.

If the inequality constraint is non-binding, we can remove it from the

optimisation problem, since it has no effect on the optimal solution.
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Nota Bene

1. The KKT conditions are only sufficient for optimality of the solution

under certain conditions, e.g. linearity of the problem.

2. Since at the optimal solution we have gi (x
∗) = ci for equality

constraints and µ∗j (hj(x
∗)− dj) = 0, we have

L(x∗, λ∗, µ∗) = f (x∗)
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KKT and Welfare Maximisation 1/2

Apply KKT now to maximisation of total economic welfare:

max
{QB

i },{Q
S
i }

f ({QB
i }, {QS

i }) =

[∑
i

Ui (Q
B
i )−

∑
i

Ci (Q
S
i )

]
subject to the balance constraint:

g({QB
i }, {QS

i }) =
∑
i

QB
i −

∑
i

QS
i = 0 ↔ λ

and any other constraints (e.g. limits on generator capacity, etc.).

Our optimisation variables are {x} = {QB
i } ∪ {QS

i }.

We get from stationarity:

0 =
∂f

∂QB
i

−
∑
i

λ∗
∂g

∂QB
i

= U ′i (Q
B
i )− λ∗ = 0

0 =
∂f

∂QS
i

−
∑
i

λ∗
∂g

∂QS
i

= −C ′i (QS
i ) + λ∗ = 0
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KKT and Welfare Maximisation 2/2

So at the optimal point of maximal total economic welfare we get the

same result as if everyone maximises their own welfare separately:

U ′i (Q
B
i ) = λ∗

C ′i (QS
i ) = λ∗

This is the CENTRAL result of microeconomics.

If we have further inequality constraints that are binding, then these

equations will receive additions with µ∗i > 0, as we will see in the next

examples...
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Application to 2-generator example with fixed demand

Our optimisation variables are {x} = {Q1,Q2} with objective function

max
Q1,Q2

f (Q1,Q2) = −c1 · Q1 − c2 · Q2

subject to one equality and four inequality constraints:

Q − Q1 − Q2 = 0 ↔ λ

Q1 ≤ Q̂1 ↔ µ1

Q2 ≤ Q̂2 ↔ µ2

−Q1 ≤ 0̂ ↔ µ3

−Q2 ≤ 0̂ ↔ µ4
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KKT for example

Stationarity gives us:

−c1 + λ∗ − µ∗1 + µ∗3 = 0

−c2 + λ∗ − µ∗2 + µ∗4 = 0

Dual feasibility and complementary slackness give us:

µ∗i ≥ 0 ∀i ∈ 1, 2, 3, 4

µ∗i (Q∗i − Q̂i ) = 0 ∀i ∈ 1, 2

µ∗i (−Q∗i ) = 0 ∀i ∈ 3, 4
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Application to Example 1

Here we have no binding constraints for generator 1 at the optimal point,

0 < Q∗1 < Q̂1, and generator 2 is at the lower boundary Q∗2 = 0.

Thus we have µ∗1 = µ∗2 = µ∗3 = 0 and µ∗4 6= 0.

We get from stationarity

−c1 + λ∗ = 0

−c2 + λ∗ + µ∗4 = 0

Thus the non-zero Lagrange multipiers are:

λ∗ = c1

µ∗4 = c2 − c1
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Application to Example 2

Here we have one binding constraint for generator 1 at the optimal point,

Q∗1 = Q̂1, and generator 2 has no binding constraints 0 < Q∗2 < Q̂2.

Thus we have µ∗1 6= 0, µ∗2 = µ∗3 = µ∗4 = 0.

We get from stationarity

−c1 + λ∗ − µ∗1 = 0

−c2 + λ∗ = 0

Thus the non-zero Lagrange multipiers are:

λ∗ = c2

µ∗1 = c2 − c1
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Extension of Example for Demand Higher than Generation

In the previous examples there was always one generator setting the

price, getting revenue at their marginal cost. How can such generators

every recoup their capital costs?

Suppose now we promote the demand Q to an optimisation variable with

utility

U(Q) =

{
200Q for Q ≤ 600

−180000 + 800Q − 1
2Q

2 for 600 ≤ Q ≤ 800
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Application to 2-generator example with fixed demand

Our optimisation variables are {x} = {Q,Q1,Q2} with objective function

max
Q,Q1,Q2

f (Q,Q1,Q2) = U(Q)− c1 · Q1 − c2 · Q2

subject to one equality and four inequality constraints:

Q − Q1 − Q2 = 0 ↔ λ

Q1 ≤ Q̂1 ↔ µ1

Q2 ≤ Q̂2 ↔ µ2

−Q1 ≤ 0̂ ↔ µ3

−Q2 ≤ 0̂ ↔ µ4
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Extension of Example for Demand Higher than Generation

We max out both generators Q∗1 = 300,Q∗2 = 400,Q∗ = 700.

From KKT we get µ∗3 = µ∗4 = 0 because the generators are both at their

upper limits.

KKT stationarity:

U ′(Q∗)− λ∗ = 0 ⇒ λ∗ = 100

−c1 + λ∗ − µ∗1 = 0 ⇒ µ∗1 = λ∗ − c1 = 90

−c2 + λ∗ − µ∗2 = 0 ⇒ µ∗2 = λ∗ − c2 = 70
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Copyright

Unless otherwise stated the graphics and text is Copyright c©Tom Brown,

2016.

We hope the graphics borrowed from others have been attributed

correctly; if not, drop a line to the authors and we will correct this.

The source LATEX, self-made graphics and Python code used to generate

the self-made graphics are available on the course website:

http://fias.uni-frankfurt.de/~brown/courses/electricity_

markets/

The graphics and text for which no other attribution are given are

licensed under a Creative Commons Attribution-ShareAlike 4.0

International License.

cba
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