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Electricity Markets
4. Exercise Sheet Solutions

06.06.2016

Exercise 1: Another three-bus system (copied from 3. Exercise
Sheet

This question is based on Kirschen & Strbac Ex. 6.6.

1. The total load is 520 MW, so for the unconstrained system we dispatch
the cheapest generators first, resulting in PD = 400 MW and PC =
120 MW.

2. The Power Transfer Distribution Factor (PTDF) tells you how much
power flows along each line for a transfer of power from a node to the
reference node.

Node 1 is the reference node, so a transfer of 1 MW from the reference
node to itself has no effect on the flows; hence the first row of H is zero.

If 1 MW flows from Node 2 to the reference Node 1, it has two paths:
a flow of x MW on the path 2 → 1 with reactance 0.2 and a flow of
1− x MW on the path 2→ 3→ 1 with total reactance 0.3 + 0.3 = 0.6.
By Kirchoff’s Voltage Law the voltage drop along both paths must be
the same, so 0.2x = 0.6(1−x), i.e. x = 3

4
. x and (1−x) and the correct

flow direction gives the second column in H.

If 1 MW flows from Node 3 to the reference Node 1, it has two paths:
a flow of x MW on the path 3 → 1 with reactance 0.3 and a flow of
1− x MW on the path 3→ 2→ 1 with total reactance 0.3 + 0.2 = 0.5.
By Kirchoff’s Voltage Law the voltage drop along both paths must be
the same, so 0.3x = 0.5(1−x), i.e. x = 5

8
. x and (1−x) and the correct

flow direction gives the second column in H.

With the more standard sign convention we get:

H =
1→ 2
1→ 3
2→ 3

 0 −3
4
−3

8

0 −1
4
−5

8

0 1
4
−3

8


3. To obtain the flows, we multiply H with the net power injections Zi at

each bus (generation minus load), i.e. the flow on each line ` is given
by F` =

∑
iH`iZi. The net power injections are Z1 = −400, Z2 = −80,

Z3 = −40 + 400 + 120 = 480. You can check
∑

i Zi = 0.



T. Brown
M. Schäfer
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For the unconstrained flow case the flows are thus:

1→ 2
1→ 3
2→ 3

 0 −3
4
−3

8

0 −1
4
−5

8

0 1
4
−3

8

 −400
−80
480

 =
1→ 2
1→ 3
2→ 3

 −120
−280
−200


All lines have a thermal limit of 250 MW, so line 1→ 3 is in violation
of the security constraints.

4. There are two options for redispatch to deload line 1 → 3: a) Shift
power from Generator C to B or b) Shift power from Generator C to
A.

We need to work out how much power to shift in each case.

a) Suppose we shift x MW from C to B. The resulting flows are:

1→ 2
1→ 3
2→ 3

 0 −3
4
−3

8

0 −1
4
−5

8

0 1
4
−3

8

 −400 + x
−80

480− x

 =
1→ 2
1→ 3
2→ 3

 −120 + 3
8
x

−280 + 5
8
x

−200 + 3
8
x


If Line 1→ 3 is to be secure we need to satisfy

−250 = −280 +
5

8
x (1.1)

Therefore x = 48 MW. Shifting this amount from Generator C to B
will increase costs by $(15-10)*48 = $240.

b) Suppose we shift x MW from C to A. The resulting flows are:

1→ 2
1→ 3
2→ 3

 0 −3
4
−3

8

0 −1
4
−5

8

0 1
4
−3

8

 −400
−80 + x
480− x

 =
1→ 2
1→ 3
2→ 3

 −120− 3
8
x

−280 + 3
8
x

−200 + 5
8
x


If Line 1→ 3 is to be secure we need to satisfy

−250 = −280 +
3

8
x (1.2)

Therefore x = 80 MW. Shifting this amount from Generator C to A
will increase costs by $(12-10)*80 = $160.

Therefore redispatch option b) is preferable, because it costs less.
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5. We have an inelastic load and plenty of generator capacity, so the nodal
price is determined by the cost of supplying an extra small load at each
node.

At node 3 any small additional load can be supplied locally by the
generator with the globally cheapest available power, i.e. Generator C,
so the nodal price at node 3 is λ3 =$10/MWh.

At node 2 the situation is less clear: we can either supply a small ad-
ditional load from generator A, which costs $12/MWh, but we could
also try to supply it from Generator C at node 3, which is cheaper.
However if Generator C increases its dispatch, line 1 → 3 would be-
come overloaded, also forcing Generator B to increase its dispatch to
compensate. Let’s see how much the combination of B and C would
cost: suppose the load at node 2 increases by ε, x of which is covered
by Generator C and ε − x is covered by Generator B. The flows are
then: 0 −3

4
−3

8

0 −1
4
−5

8

0 1
4
−3

8

 −400 + ε− x
−ε

400 + x

 =

 −150 + 3
4
ε− 3

8
x

−250 + 1
4
ε− 5

8
x

−150− 1
4
ε− 3

8
x


For line 1→ 3 to remain secure, we require

−250 = −250 +
1

4
ε− 5

8
x (1.3)

i.e. x = 2
5
ε. In this case the cost is

(
2
5
10 + 3

5
15
)

$/MWh = 13 $/MWh,
so it’s actually cheaper to use Generator A to locally supply the load
and then λ2 = 12 $/MWh.

For node 1 there is a similar consideration. It’s clear that Generator
B will be more expensive than some combination of A and C which
doesn’t overload line 1→ 3, so let’s again split the coverage of an extra
load ε at node 1 between A and C. The flows are then 0 −3

4
−3

8

0 −1
4
−5

8

0 1
4
−3

8

 −400− ε
ε− x

400 + x

 =

 −150− 3
4
ε+ 3

8
x

−250− 1
4
ε− 3

8
x

−150 + 1
4
ε− 5

8
x


To avoid overloading line 1→ 3 we need

0 = −1

4
ε− 3

8
x
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i.e. x = −2
3
ε. In this case the cost is λ1 =

(
−2

3
10 + 5

3
12
)

$/MWh =
13.33 $/MWh.

There are two ways of calculating the merchandising surplus. In the
first way, we calculate the difference between what consumers pay and
the generator revenue:

(400∗13.33+80∗12+40∗10)−(0∗13.33+80∗12+440∗10) = 1333.333

The other way is to multiply the line flows by the price difference be-
tween the connected nodes

(150 ∗ 1.33) + (250 ∗ 3.333) + (150 ∗ 2) = 1333.3333 (1.4)

6. This is too hard to do by hand...better to let the computer do it :-).

PA = 63.33 MW; PB = 10 MW; PC = 6.67 MW; PD = 400 MW

λ1 = 15 $/MWh; λ2 = 12 $/MWh; λ3 = 10 $/MWh

Exercise 2: Negative nodal prices

Suppose there is a load of 100 MW at node 3, a generator A at node 1
with marginal cost 1 e/MWh, a generator B at node 3 with marginal cost
10 e/MWh and a transmission constraint of 10 MW on line 2 → 3. This
example is constructed so that increasing the load at node 2 relieves the con-
strained line and allows more cheap generation to be imported from generator
A at node 1 to the load at node 3.
First, let’s work out the dispatch of generators A and B. Suppose A dis-
patches x MW so that B must dispatch 100− x MW. Let’s find x. We have
flows

1→ 2
1→ 3
2→ 3

 2
5
−1

5
0

3
5

1
5

0
2
5

4
5

0

 x
0

100− (100− x)

 =
1→ 2
1→ 3
2→ 3

 2
5
x

3
5
x

2
5
x


If the line 2→ 3 is restricted to 10 MW we want to maximise x to maximise
the dispatch from the cheaper generator A, so then we can solve for x

10 =
2

5
x (2.1)

so that x = 25, PA = 25, PB = 75.
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Now suppose we increase the demand at node 2 by ε. What is the cost of
distributing the generation x to Generator A and ε− x to Generator B? We
have flows

1→ 2
1→ 3
2→ 3

 2
5
−1

5
0

3
5

1
5

0
2
5

4
5

0

 25 + x
−ε

−25− x+ ε

 =
1→ 2
1→ 3
2→ 3

 10 + 2
5
x+ 1

5
ε

15 + 3
5
x− 1

5
ε

10 + 2
5
x− 4

5
ε


To maintain the security of line 2 → 3 we need x = 2ε so that A increases
by 2ε and B increases by ε − x = −ε. This results in a cheaper dispatch
because dispatch from A has replaced expensive dispatch from B, with total
cost 2ε MWh∗1 e/MWh − ε MWh∗10 e/MWh = −8ε e, i.e. a negative
price of -8e/MWh.

Exercise 3: Levelised cost of electricity for wind power

1. The LCOE gives an average cost for producing a kWh of energy over
the lifetime of the generator, discounted to present net value. Note
that offshore wind has a higher interest rate because it is perceived as
a more risky, immature technology than onshore wind.

2. Using the formula we have

Type Onshore Onshore Offshore Offshore
(low wind) (strong wind) (low wind) (strong wind)

LCOE (e/kWh) 0.0958 0.0555 0.1634 0.1249

3. We take approximate values from Lecture 1 for the technologies.

4. The effective FIT is found by spreading the FIT over 20 years evenly
and thus solving (with discounting):

20∑
t=1

X

(1 + i)t
=

5∑
t=1

8.72ct/kWh

(1 + i)t
+

20∑
t=6

4.95ct/kWh

(1 + i)t

Pull the X out of the sum and using i = 0.038 we get

X =
1∑20

t=1
1

(1+i)t

[
5∑

t=1

8.72ct/kWh

(1 + i)t
+

20∑
t=6

4.95ct/kWh

(1 + i)t

]
= 6.17ct/kWh
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Type Solar PV Lignite Hard Coal CCGT

Investment 1000 1500 1200 700
cost (e/kW)

Lifetime 20 40 40 30

annual var. 0.02 0.006 0.025 0.04
cost (e/kWh)

annual full- 1000 7000 5000 4000
load hours

interest rate 3.8% 3.8 % 3.8% 3.8%

LCOE (e/kWh) 0.0923 0.0165 0.0368 0.0500

Exercise 4: Duration Curves and Generation Investment

This question is from Hesamzedah & Biggar, Q9.4.
We answer this question using screening curves. First we work out the in-
tersection points of the generators as a function of their capacity factors
(percentage of time that they operate at full power per year), then we work
out the capacities K∗ of the generators.
The screening curves tell us above which capacity factor it costs less to run
one type of generator rather than another.

Generator ci [e/MWh] fi [e/MW/h]

A 10 15

B 20 5

C 50 1

LS 1000 0

Generators A and B intersect at xAB given by

15 + 10xAB = 5 + 20xAB

i.e. xAB = 1. This means that in ALL circumstances B is cheaper than A,
so A will never get built, KA = 0.
Generators B and C intersect at xBC given by

5 + 20xBC = 1 + 50xBC
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i.e. xBC = 2/15. This means that if a generator can run more than 2/15 of
the time, then it should be generator B. The amount of load that is present
at least xBC of the time gives KB, which we find by solving based on the
load duration curve

1000− 1000(xBC) = KB (4.1)

to find KB = 866.6667.
Generator C and load-shedding LS intersect at xCLS given by

1 + 50xCLS = 1000xCLS

i.e. xCLS = 1/950. This means that for 1/950 of the time we have load-
shedding because it’s not economical to cover the rare times of very high
load. To get the capacity of generator C we solve based on the load duration
curve

1000− 1000(xCLS) = KB +KC (4.2)

to find KC = 132.3.
Load above KB +KC = 999.067 is shed.

Exercise 5: Screening curves

This question is a proof of the formula from Lecture 7, Slide 34.
We have generators i = 1, . . . N with costs

Ci(Qi, Ki) = ciQi + fiKi (5.1)

The sums of the generator capacities (ordered by fixed price) are Si =∑i
k=1Kk.

The equation

fi = (V − ci)P (Q > SN) +
N∑

j=i+1

(cj − ci)P (Sj−1 < Q ≤ Sj)

expresses the condition for optimal generation investment with inelastic de-
mand with value V : the fixed cost fi of each generation technology should
be equal to the area of the price duration curve above the marginal cost ci
of the generator.
We now use this to prove the screening curve formula, i.e. that the optimal
capacities are determined where the costs as a function of capacity factor
intersect.
We define θi = P (Q > Si) and note that P (Sj−1 < Q ≤ Sj) = P (Q >
Sj−1)− P (Q > Sj) = θj−1 − θj.
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For i = N we get
fN = (V − cN)θN

For i < N we have

fi = (V − ci)θN +
N∑

j=i+1

(cj − ci)(θj−1 − θj)

= V θN − ciθN +
N∑

j=i+1

cj(θj−1 − θj)− ci

(
N∑

j=i+1

θj−1 −
N∑

j=i+1

θj

)

= V θN − ciθN + ci+1(θi − θi+1) +
N∑

j=i+2

cj(θj−1 − θj)− ciθi + ciθN

= V θN − ciθi + ci+1θi − ci+1θi+1 +
N∑

j=i+2

cj(θj−1 − θj)

= V θN − ciθi + ci+1θi − ci+1θN +
N∑

j=i+2

(cj − ci+1)(θj−1 − θj)

= fi+1 − ciθi + ci+1θi


