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Exercise 1: Investment versus marginal costs (*)

1. Number of hours of lighting over 5 years: (4h/d)*(5a)*(365d/a) =
7300h.

For Bulb A cost is (e0.3/kWh) * (0.015 W) * 7300 h = e32.85.

For Bulb B cost is (e0.3/kWh) * (0.025 W) * 7300 h = e54.75.

2. Bulb B must be at least e21.90 cheaper than Bulb A (i.e. the difference
in operating costs over 5 years) before the overall costs of Bulb B are
lower. So buying expensive lightbulbs with high efficiency often makes
sense...

NB: With a non-zero discount rate, the difference is smaller, since we
have to price in the lost revenue from investing our capital elsewhere
- but such considerations are overkill for such small investment decisi-
sions.

Exercise 2: Shadow prices of limits on consumption

We convert the exercise to an optimisation problem with objective

max
q
U(q)− πq (2.1)

with constraints

q ≤ qmax ↔ µmax (2.2)

−q ≤ −qmin ↔ µmin (2.3)

From stationarity we get:

0 =
∂

∂q
(U(q)− πq)− µmax

∂

∂q
(q − qmax)− µmin

∂

∂q
(−q + qmin)

= U ′(q)− π − µmax + µmin (2.4)

1. The marginal utility curve is U ′(q) = 70− 6q [e/Mwh]. At π = 5, the
demand would be determined by 5 = 70− 6q, i.e. q = 65/6 = 10.8333,
which is above the consumption limit qmax = 10. Therefore the optimal
demand is q∗ = 10, the upper limit is binding µmax ≥ 0 and the lower
limit is non-binding µmin = 0.

To determine the value of µmax we use (2.4) to get µmax = U ′(q∗)−π =
U ′(10)− 5 = 5.
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2. At π = 60, the demand would be determined by 60 = 70 − 6q, i.e.
q = 10/6 = 1.667, which is below the consumption limit qmin = 2.
Therefore the optimal demand is q∗ = 2, the upper limit is non-binding
µmax = 0 and the lower limit is binding µmin ≥ 0.

To determine the value of µmin we use (2.4) to get µmin = π−U ′(q∗) =
60− U ′(2) = 2.

Exercise 3: Revenue, profit and consumer surplus

1. The system marginal price is $ 16/MWh, so for the generators Notice

Company Production Costs Revenue Profit

[MWh] [$] [$] [$]

Red 1 200 2400 3200 800

Red 2 50 750 800 50

Blue 100 1300 1600 300

Green 100 1600 1600 0

Total 450 6050 7200 1150

that Green makes no profit.

For the consumers

Company Consumption Utility Expense Net Surplus

[MWh] [$] [$] [$]

Orange 200 5000 3200 1800

Yellow 100 2300 1600 700

Purple 150 3300 2400 900

Total 450 10600 7200 3400

2. If consumer company “Orange” withdraws its offers from the market,
the market will clear at a lower price of $ 13/MWh.

The supply and demand meets in a line between 250 MWh and 300
MWh, which makes the final result somewhat ambiguous.
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Exercise 4: Generator constraints, transmission constraints and
investment

Note that it is important in this example that the same company owns both
the generators and the transmission line; if an independent TSO owned the
transmission line, he could take the congestion revenue for himself.

1. If we label the dispatch of Generator 1 by q1 and of Generator 2 by q2,
then the objective function is to maximise total profit

max
q1,q2

[π(q1 + q2)− C1(q1)− C2(q2)] = max
q1,q2

[π(q1 + q2)− 5q1 − 10q2]

(4.1)

The constraints are

q1 ≤ q̂1 ↔ µ̄1 (4.2)

−q1 ≤ 0 ↔ µ
¯1

(4.3)

q2 ≤ q̂2 ↔ µ̄2 (4.4)

−q2 ≤ 0 ↔ µ
¯2

(4.5)

q1 + q2 ≤ K ↔ µT (4.6)

Where the first four constraints come from generation, where q̂1 = 300
MW and q̂1 = 900 MW and the final constraint comes from the trans-
mission, where K = 1000 MW is the capacity of the export transmission
line.

2. Since the market price is always higher than the marginal price of the
generators, they will both run as high as possible given the constraints.
Since Generator 1 is cheaper than Generator 2, it will max-out its
capacity first, so that q∗1 = q̂1 = 300 MW. Generator 2 will output as
much as it can given the transmission constraint, so that q∗2 = 700 MW.

3. From stationarity we have for q1 the non-zero terms:

0 =
∂

∂q1
(π(q1 + q2)− 5q1 − 10q2)− µ̄1

∂

∂q1
(q1 − q̂1)−m

¯ 1

∂

∂q1
(−q1)− µT

∂

∂q1
(q1 + q2 −K)

= π − 5− µ̄1 + µ
¯1
− µT (4.7)

For q2 we have

0 =
∂

∂q2
(π(q1 + q2)− 5q1 − 10q2)− µ̄2

∂

∂q2
(q2 − q̂2)−m

¯ 2

∂

∂q2
(−q2)− µT

∂

∂q2
(q1 + q2 −K)

= π − 10− µ̄2 + µ
¯2
− µT (4.8)



T. Brown
M. Schäfer
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At the optimal point we can see that µ
¯1

, µ̄2 and µ
¯2

are non-binding, so
these are zero. To solve for µT and µ̄1 we have two equations:

0 = π − 5− µ̄1 − µT

0 = π − 10− µT (4.9)

Therefore

µT = π − 10 (4.10)

µ̄1 = 5 (4.11)

4. The value of µ̄1 gives us the increase in profit for a small increase in q̂1.
We want to understand a large increase in q̂1 of 50 MW, therefore we
have to integrate over µ̄1 as a function of q̂1, since the value of µ̄1 may
change as q̂1 changes. The total increase in profitability for expanding
q̂1 from 300 MW to 350 MW is then∫ 350

300

µ̄1(q̂1)dq̂1 (4.12)

Because of the linearity of the problem, µ̄1 is actually constant as we
expand q̂1 in the region from 300 MW to 350 MW. The extra profit
would be per year: 5 e/MWh * 50 MW * 8760h/a = e2.19 million/a.
At or below this annualised capital cost, it would be worth investing.

5. Here µT changes as K is expanded, so we have to integrate:∫ 1200

1000

µT (K)dK (4.13)

Since µT is constant as we expand K from 1000 MW to 1200 MW, the
extra profit would be per year: (average(π)-10) e/MWh * 200 MW *
8760h/a = e17.52 million/a. At or below this annualised capital cost,
it would be worth investing.

NB: An extension beyond 1200 MW would not bring anything, because
the generator constraints would be then binding.


