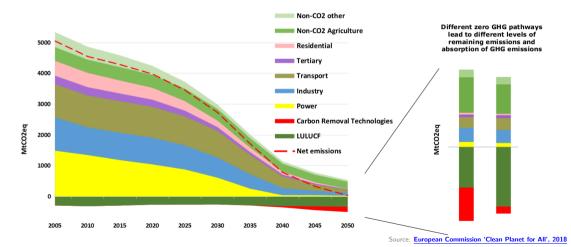


Energy Economics, Winter Semester 2021-2 Lecture 13: The Future

Prof. Tom Brown, Dr. Fabian Neumann

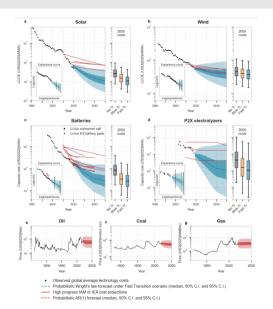
Department of Digital Transformation in Energy Systems, Institute of Energy Technology, TU Berlin

Unless otherwise stated, graphics and text are Copyright © Tom Brown, 2021-2. Graphics and text for which no other attribution are given are licensed under a Creative Commons Attribution 4.0 International Licence.


- 1. Possible Pathways
- 2. Example Zero-Emission Systems
- 3. Market Integration of Renewables
- 4. Markets for Green Fuels

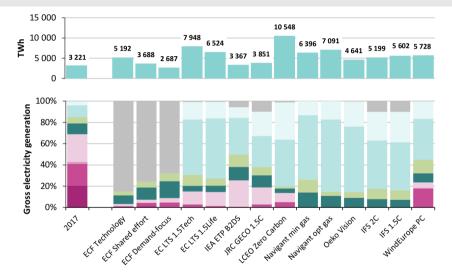
Possible Pathways

The Greenhouse Gas Challenge: Net-Zero Emissions by 2050


Paris-compliant 1.5° C scenarios from European Commission for **net-zero GHG in EU by 2050**. This target has been adopted by the EU and enshrined in the **European Green Deal**.

2

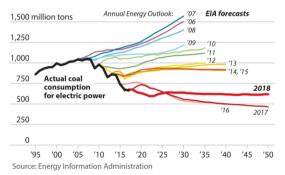
5 critical techs: wind, solar, batteries, heat pumps, electrolyzers



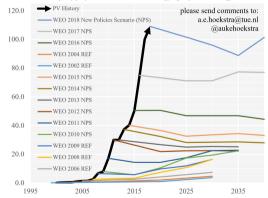
All critical techs for the energy transition share a small unit size, enabling fast production and installation, economies of scale in manufacturing and learning-by-doing.

- Low-cost electricity from wind and solar.
- **Batteries** for mobility and balancing applications.
- **Electrolytic hydrogen** (splitting water) for everything else: long-duration storage, aviation, shipping, industry.
- Heat pumps (missing from graphic) for building comfort and some low-T industry.

2050 scenarios for EU: power demand doubles, mostly met by VRE


Coal Natural gas Oil Nuclear Hydropower Biomass Wind Solar Other renewables

Not all predictions go to plan...


EIA Coal Consumption Forecasts, 2006-2018

Each year, the Energy Information Administration releases its Annual Energy Outlook, which includes a long-term forecast for U.S. coal consumption for electric power generation. However, the forecasts have been wildly inaccurate, even in the near term.

Annual PV additions: historic data vs IEA WEO predictions

Example Zero-Emission Systems

Online optimisation

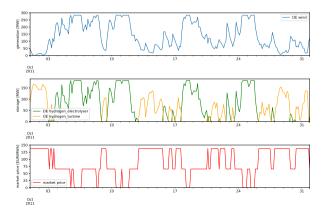
The following online toy model optimises a combination of wind, solar, batteries and hydrogen storage to meet a baseload demand, using weather data from any location in the world.

https://model.energy/

Look at the differences of wind and solar feed-in and optimal storage solutions for:

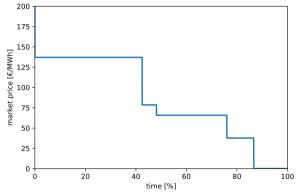
- City: Berlin
- Country: Germany
- Continent: Europe

What do you notice?


Storage charges at low prices, discharges at high prices

Simplified example from **https://model.energy** for Germany with only wind and hydrogen storage to meet a flat 100 MW demand.

Average charging price (with electrolyser): 43 \in /MWh


Average discharging price (with turbine): 144 \in /MWh

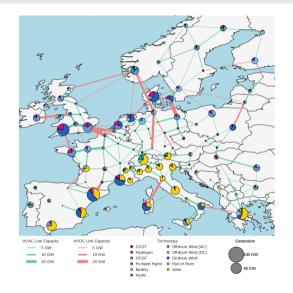
Storage charges at low prices, discharges at high prices

How are prices when there is only zero-marginal-cost wind/solar and storage but no fuels?

- When wind is scarce for ~40% of time, hydrogen turbine sets price high enough to cover their costs. Green hydrogen costs money, just like fossil fuel!
- Electrolyser is willing to bid more than zero for electricity (since it earns selling hydrogen to turbine), so demand sets non-zero price ${\sim}45\%$ of time.
- Only when electrolyser is at capacity, do we curtail wind and price is zero ${\sim}15\%$ of time.

Storage charges at low prices, discharges at high prices

Technische Universität Berlin


We see batteries in California behaving exactly in this way today.

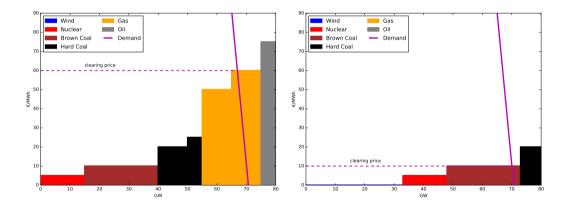
1,500 Discharging 1,000 500 0 -500 -1,000 Charging HITACHI ALL Velocity Suite -1,500 22 23 24 20 21 Hour of the Day

July 2021, MWh

More Detailed Modelling

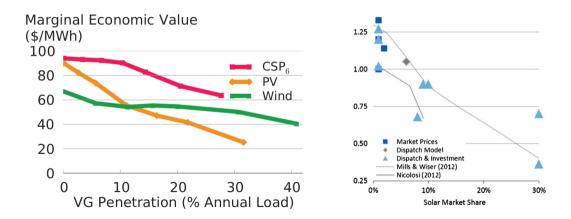
For more detailed research-level modelling of future net-zero energy systems that include:

- All low-carbon generators
- Network modelling
- Other sectors (heating, transport, industry)
- Green hydrogen and materials
- Accounting for public acceptance


Come to the Energy Systems course in Summer Semester!

Market Integration of Renewables

Traditional 'primal' view of market value of wind and solar


Prices are depressed by zero-marginal-cost wind and solar, which 'eat their own revenue'.

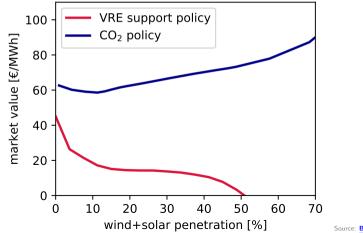
Traditional 'primal' view of market value of wind and solar

Market value, i.e. average price generator gets for feed-in, declines with penetration.

What the literature says about market value of wind and solar

- "Market value of wind and solar always declines with penetration VRE eat own revenue."
- "Variability is the fundamental cause of market value decline."
- "Declining market value implies wind and solar become uneconomical at high shares."
- "Market integration of large shares of variable renewables is impossible."
- "New low-carbon technologies will be necessary at high penetrations."

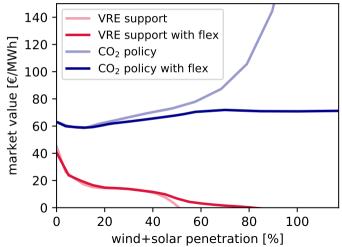
What the literature says about market value of wind and solar


- "Market value of wind and solar always declines with penetration VRE eat own revenue."
- "Variability is the fundamental cause of market value decline."
- "Declining market value implies wind and solar become uneconomical at high shares."
- "Market integration of large shares of variable renewables is impossible."
- "New low-carbon technologies will be necessary at high penetrations."

We show that from a **dual perspective**, each of these statements is **wrong**.

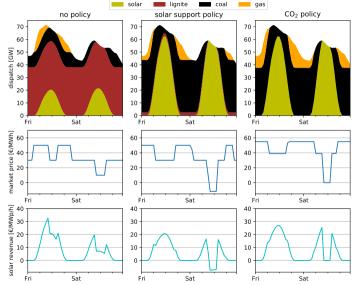
Market value decline depends on market structure

Implicit assumption in literature: VRE are forced in with subsidies or quotas, pushing MV down. However, if VRE are drawn in with CO_2 pricing, MV does not decline.



14 Source: Brown & Reichenberg (2021)

This holds even up to 100% wind and solar...



...provided there is **flexibility** from long- and short-term storage and/or transmission expansion.

Example from primal perspective: solar support versus CO₂ pricing

16 Source: Brown & Reichenberg (2021)

Market value decline: primal versus dual perspective

Technische Universität Berlin

Primal perspective:

- Market value declines because zero-marginal-cost VRE pushes out other generators
- Variability is the fundamental cause
- Only affects wind and solar generators

Dual perspective:

- Market value declines because share of generation is forced beyond equilibrium
- Policy is the fundamental cause
- Affects all generators which are forced beyond equilibrium

Market value decline: primal versus dual perspective

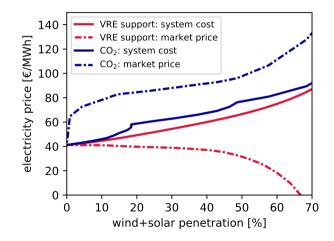
Technische Universität Berlin

Primal perspective:

- Market value declines because zero-marginal-cost VRE pushes out other generators
- Variability is the fundamental cause
- Only affects wind and solar generators

Dual perspective:

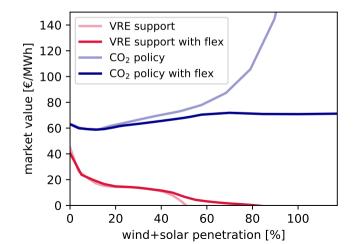
- Market value declines because share of generation is forced beyond equilibrium
- Policy is the fundamental cause
- Affects all generators which are forced beyond equilibrium


Perspectives and framing have consequences!

System cost

With VRE as the only low-C generators, system costs barely differ between policies.

 \Rightarrow MV collapse under support policy does not necessarily indicate system is pathological.

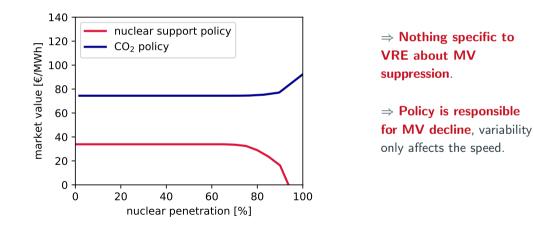


Role of flexibility

Flexibility only delays market value decline for support policies.

For CO₂ policies it stabilises LCOE = MV above penetrations of 70%.

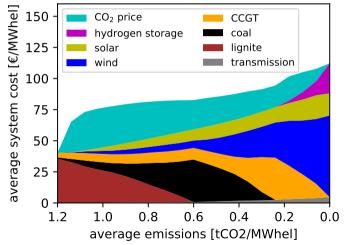
Flexibility added here:


- short-term storage (batteries)
- long-term storage (hydrogen)
- transmission expansion

19 Source: Brown & Reichenberg (2021)

Support policy for nuclear shows similar results

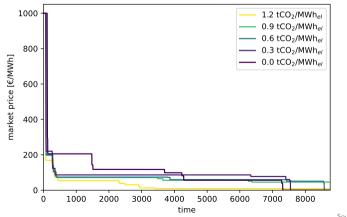
Nuclear revenue is also suppressed under a support policy, declining to zero at high penetrations because of the variable demand. A CO_2 price avoids this behaviour.



20 Source: Brown & Reichenberg (2021)

System costs for CO₂ policy

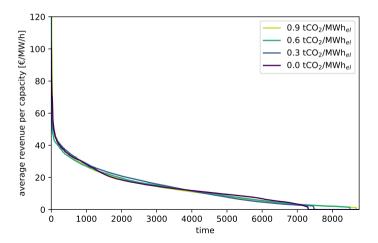
In breakdown of system costs, hydrogen storage balances the system at high penetrations.



Price duration curves under a CO₂ policy

CO₂ price raises prices when fossil generators on margin, but also storage bids **high opportunity costs** when discharging, while charging bids reduce hours when prices are zero.

 \Rightarrow Market does not degenerate into bifurcation of prices between zero and very high.


22 Source: Brown & Reichenberg (2021)

Average revenue per capacity per hour

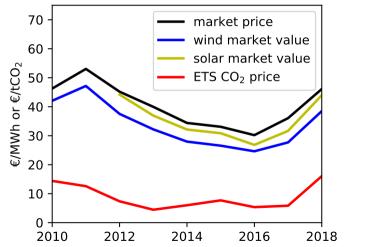
The distribution of hours when VRE earns its money barely changes as CO₂ emission reduce.

 \Rightarrow VRE does not become dependent on only a small number of hours to make money.

What we say about market value of wind and solar

- "Market value of wind and solar always declines with penetration VRE eat own revenue."
 - No, if drawn in with a CO_2 price, market value does not decline.
- "Variability is the fundamental cause of market value decline."
 - No, policy is the fundamental cause (no policy, no decline), but variability affects speed.
- "Declining market value implies wind and solar become uneconomical at high shares."
 - Not necessarily: market value can decline even when system cost is close to optimal.
- "Market integration of large shares of variable renewables is impossible."
 - No, wind and solar can be integrated into markets with sufficient flexibility.
- "New low-carbon technologies will be necessary at high penetrations."
 - Not necessarily, but they may help to reduce system costs.

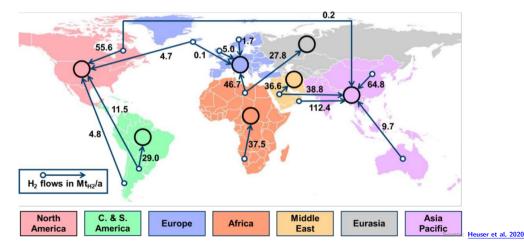
Conclusions


- Technische Universität Berlin
- From a **dual perspective**, market value decline is **guaranteed** if generators pushed in with subsidy/quotas
- Can construct reasonable market designs with CO₂ pricing that show **no market value decline** as the penetration for wind and solar rises (even up to 100%)
- To preserve market value of wind and solar, choose to value their low emissions
- In markets that rely on subsidies alone, market value decline **does not necessarily indicate problems** (i.e. can still be close to system optimum for CO₂ reduction)
- Can combine CO_2 pricing with support to maintain market value & reduce investor risk
- Given its policy-dependence, **use market value with caution** (like LCOE) & **focus on system cost** instead

Further reading: Brown & Reichenberg, "Decreasing market value of variable renewables can be avoided by policy action," Energy Economics (2021), doi:10.1016/j.eneco.2021.105354.

Real German data

Before 2016 market value declines with rising subsidies; after 2016 it rises as CO_2 prices rise.


26

Markets for Green Fuels

Worldwide trade in synthetic fuels

Today fossil fuels are traded across the globe. Electrolytic-hydrogen-based synthetic fuels (e.g. hydrogen, ammonia, methane, liquid hydrocarbons and methanol) could also be piped/shipped worldwide. Possible future scenario for hydrogen trade from Helmholtz colleagues at FZJ IEK-3:

27

The German H2Global scheme provides support for the production of renewable hydrogen in non-EU countries, to be imported and sold in the EU.

It makes available \in 900 million over 10 years to cover the difference between production costs and what consumers are willing to pay.

This difference is determined by a double auction: producers bids for hydrogen purchase agreements (HPA) that run for 10 years, providing investment security, while consumers bid for hydrogen service agreements (HSA) of duration one year.

H2Global was **approved** by the European Commission to comply with EU state aid rules in December 2021.

See H2Global website.

Could end up in a situation with following characteristics:

- Most electricity is **sourced locally** from variable wind and solar
- Backup is provided either by electricity storage or imported hydrogen-based fuels
- Many demand sectors are **directly electrified** (e.g. heat pumps in buildings, electric vehicles in transport) or with green-hydrogen-based fuels (e.g. industry)
- Hydrogen-based liquid fuels (ammonia, methanol, diesel/kerosene) are traded globally
- Since wind and solar can be found everywhere, less market concentration than fossil fuels
 ⇒ geopolitical reordering