
Complex Renewable Energy Networks
(SoSe 2017, FIAS & Goethe-Universität Frankfurt)

HomeWork Sheet II
To be prepared for the exercise session on Wednesday, 17.05.2017.
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Figure 1: Seasonal variations of wind
and solar power generation W (t)
and S(t) , and load L(t)
around the mean 1 .

Problem II.1 (analytical optimal mix). Fig-
ure 1 shows approximations to the seasonal variations of
wind and solar power generation W (t) and S(t) and load
L(t):

W (t) = 1 +AW cosωt

S(t) = 1−AS cosωt

L(t) = 1 +AL cosωt

The time series are normalized to

〈W 〉 = 〈S 〉 = 〈L 〉 :=
1

T

∫ T

0
L(t)dt = 1 ,

and the constants have the values

ω =
2π

T
T = 1 year

AW = 0.4 AS = 0.75 AL = 0.1

(a) What is the seasonal optimal mix α, which minimizes

〈 [αW (·) + (1− α)S(·)− L(·)]2 〉 =
1

T

∫ T

0
[αW (t) + (1− α)S(t)− L(t)]2 dt,

(b) How does the optimal mix change if we replace AL → −AL?

(c) A constant conventional power source C(t) = 1 − γ is introduced; The mismatch then
becomes

∆(t) = γ [αW (t) + (1− α)S(t)] + C(t)− L(t). (1)

Analogously to (a), find the optimal mix α as a function of 0 ≤ γ ≤ 1, which minimizes
〈∆2 〉.

Problem II.2 (network theory basics). Consider the simple network shown in
Figure 2. Calculate in Python or by hand:

(a) Compile the nodes list and the edge list (while graph-theoretically both lists are unordered
sets, let’s agree on an ordering now which can serve as basis for the matrices in exercises
(c), (e) and (f): we sort everything in ascending numerical order, i.e. node 1 before node
2 and edge (1, 2) before edge (1, 4) before edge (2, 3)).

(b) Determine the order and the size of the network.

(c) Compute the adjacency matrix A and check that it is symmetric.
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(d) Find the degree kn of each node n and compute the average degree of the network.

(e) Determine the incidence matrix K by assuming the links are always directed from smaller-
numbered node to larger-numbered node, i.e. from node 2 to node 3, instead of from 3
to 2.

(f) Compute the Laplacian L of the network using kn andA. Rememember that the Laplacian
can also be computed as L = KKT and check that the two definitions agree.

(g) Find the diameter of the network by simply looking at Figure 2.
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Figure 2: Simple Network.

Problem II.3 (linear power flow). If you map the
nodes to countries like 0 = DK, 1 = DE, 2 = CH, 3 = IT, 4 =
AT and 5 = CZ, the network in Figure 2 represents a small part
of the European electricity network (albeit very simplified).
On the course home page1, you can find the power imbalance

time series for the six countries for January 2017 in hourly MW in
the file imbalance.csv. They have been derived from the Physical
Flows as published by ENTSO-E2.
The linear power flow is given by

pi =
∑
j

L̃i,jθj , fl =
1

xl

∑
i

Ki,lθi , (2)

where the weighted Laplacian is L̃i,j =
∑

lKi,l
1
xl
Kj,l. For simplic-

ity, we assume identity reactance on all links xl = 1.

(a) Compute the voltage angles θj and flows fl for the first hour in the dataset with the
convention of θ0 = 0; i.e. the slack bus is at node 0 (hint: linear equation systems are
solved efficiently using numpy.linalg.solve).

(b) Determine the average flow on each link in January 2017 and draw it as a directed network
on a sheet of paper. Is it a tree?

1https://nworbmot.org/courses/complex_renewable_energy_networks/
2https://transparency.entsoe.eu/transmission-domain/physicalFlow/show
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