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Optimisation Revision



Optimisation problem

We have an objective function f : Rk → R

max
x

f (x)

[x = (x1, . . . xk)] subject to some constraints within Rk :

gi (x) = ci ↔ λi i = 1, . . . n

hj(x) ≤ dj ↔ µj j = 1, . . .m

λi and µj are the KKT multipliers (basically Lagrange multipliers) we

introduce for each constraint equation; it measures the change in the

objective value of the optimal solution obtained by relaxing the constraint

(shadow price).
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KKT conditions

The Karush-Kuhn-Tucker (KKT) conditions are necessary conditions that

an optimal solution x∗, µ∗, λ∗ always satisfies (up to some regularity

conditions):

1. Stationarity: For l = 1, . . . k

∂L
∂xl

=
∂f

∂xl
−
∑
i

λ∗i
∂gi
∂xl
−
∑
j

µ∗j
∂hj
∂xl

= 0

2. Primal feasibility:

gi (x
∗) = ci

hj(x
∗) ≤ dj

3. Dual feasibility: µ∗j ≥ 0

4. Complementary slackness: µ∗j (hj(x
∗)− dj) = 0
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min/max and signs

If the problem is a maximisation problem (like above), then µ∗j ≥ 0 since

µj = ∂L
∂dj

and if we increase dj in the constraint hj(x) ≤ dj , then the

feasible space can only get bigger. Since if X ⊆ X ′

max
x∈X

f (x) ≤ max
x∈X ′

f (x)

then the objective value at the optimum point can only get bigger, and

thus µ∗j ≥ 0. (If dj →∞ then the constraint is no longer binding, if

dj → −∞ then the feasible space vanishes.)

If however the problem is a minimisation problem (e.g. cost

minimisation) then we can use

min
x∈X

f (x) = −max
x∈X

[−f (x)]

We can keep our definition of the Lagrangian and almost all the KKT

conditions, but we have a change of sign µ∗j ≤ 0, since

min
x∈X

f (x) ≥ min
x∈X ′

f (x)

The λ∗i also change sign. 6



Electricity Markets from Perspective

of Single Generators and Consumers



Efficient Markets for the short-run

Assume investments already made in generators and and consumption

assets (factories, machines, etc.).

Assume all actors are price takers (i.e. nobody can exercise market

power) and we have perfect competition.

How do we allocate production and consumption in the most efficient

way?

I.e. we are interested in the short-run “static” efficiency.
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Last time: 2 generators at a node

Last time we saw an example with 2 generators at a single node:
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We’re now going to look at the economics theory behind this notion of

surplus.
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Generator Cost Function

A generator has a cost or supply function C (Q) in e/h, which gives the

total operating costs (of fuel, etc.) for a given rate of electricity

generation Q MW.

This is the integral of the purple area in the previous slide.

Typically the generator has a higher cost for a higher rate of generation

Q, i.e. the first derivative is positive C ′(Q) > 0. For most generators the

rate at which cost increases with rate of production itself increases as the

rate of production increases, i.e. C ′′(Q) > 0.
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Cost Function: Example

A gas generator has a cost function which depends on the rate of

electricity generation Q [e/h] according to

C (Q) = 0.005 Q2 + 9.3 Q + 120
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Note that the slope is always positive and becomes more positive for

increasing Q. The curve does not start at the origin because of startup

costs, no load costs, etc. 11



Optimal generator behaviour

We assume that the generator is a price-taker, i.e. they cannot influence

the price by changing the amount they generate.

Suppose the market price is λ e/MWh. For a generation rate Q, the

revenue is λQ and the generator should adjust their generation rate Q to

maximise their net generation surplus, i.e. their profit:

max
Q

[λQ − C (Q)]

This optimisation problem is optimised for Q = Q∗ where

C ′(Q∗) ≡ dC

dQ
(Q∗) = λ

[Check units: dC
dQ has units e/hMW = e/MWh.]

I.e. the generator increases their output until they make a net loss for

any increase of generation.

C ′(Q) is known as the marginal cost curve, which shows, for each rate of

generation Q what price λ the generator should be willing to supply at. 12



Marginal cost function: Example

For our example the marginal function is given by

C ′(Q) = 0.001 Q + 9.3
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Generator surplus

The area under the curve is generator costs, which as the integral of a

derivative, just gives the cost function C (Q) again, up to a constant.

The generator surplus is the profit the generator makes by having costs

below the electricity price.

0 100 200 300 400 500

Electricity generator rate Q [MW]

0

5

10

15

20

M
a
rg

in
a
l 
co

st
 f

u
n
ct

io
n
 C

′ (Q
) 

[
/M

W
h
]

electricity price

generator surplus

costs

14



Limits to generation

Note that it is quite common for generators to be limited by e.g. their

capacity, which may become a binding, i.e. limiting factor before the

price plays a role, e.g.

Q ≤ Qmax

In the following case the optimal generation is at Q∗ = Qmax =

250 MW. We have a binding constraint and can define a shadow price µ,

which indicates the benefit of relaxing the constraint µ∗ = λ− C ′(Q∗).
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Consumer behaviour: Theory

Suppose for some given period a consumer consumes electricity at a rate

of Q MW.

Their utility or value function U(Q) in e/h is a measure of their benefit

for a given consumption rate Q.

For a firm this could be the profit related to this electricity consumption

from manufacturing goods.

Typical the consumer has a higher utility for higher Q, i.e. the first

derivative is positive U ′(Q) > 0. By assumption, the rate of value

increase with consumption decreases the higher the rate of consumption,

i.e. U ′′(Q) < 0.
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Utility: Example

A widget manufacturer has a utility function which depends on the rate

of electricity consumption Q [e/h] as

U(Q) = 0.0667 Q3 − 8 Q2 + 300 Q
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Note that the slope is always positive, but becomes less positive for

increasing Q.
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Optimal consumer behaviour

We assume that the consumer is a price-taker, i.e. they cannot influence

the price by changing the amount they consume.

Suppose the market price is λ e/MWh. The consumer should adjust

their consumption rate Q to maximise their net surplus

max
Q

[U(Q)− λQ]

This optimisation problem is optimised for Q = Q∗ where

U ′(Q∗) ≡ dU

dQ
(Q∗) = λ

[Check units: dU
dQ has units e/hMW = e/MWh.]

I.e. the consumer increases their consumption until they make a net loss

for any increase of consumption.

U ′(Q) is known as the inverse demand curve or marginal utility curve,

which shows, for each rate of consumption Q what price λ the consumer

should be willing to pay. 18



Inverse demand function: Example

For our example the inverse demand function is given by

U ′(Q) = 0.2 Q2 − 16 Q + 300
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It’s called the inverse demand function, because the demand function is

the function you get from reversing the axes.
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Inverse demand function: Example

The demand function D(λ) gives the demand Q as a function of the

price λ. D(U ′(Q)) = Q.

For our example the demand function is given by

D(λ) = −((λ+ 20)/0.2)0.5 + 40
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Gross consumer surplus

The area under the inverse demand curve is the gross consumer surplus,

which as the integral of a derivative, just gives the utility function U(Q)

again, up to a constant.
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Net consumer surplus

The more relevant net consumer surplus, or just consumer surplus is the

net gain the consumer makes by having utility above the electricity price.

0 5 10 15 20

Electricity consumption rate Q [MW]

0

50

100

150

200

250

300

In
v
e
rs

e
 d

e
m

a
n
d
 f

u
n
ct

io
n
 U

′ (Q
) 

[
/M

W
h
]

electricity price

(net) consumer surplus

22



Limits to consumption

Note that it is quite common for consumption to be limited by other

factors before the electricity price becomes too expensive, e.g. due to the

size of electrical machinery. This gives an upper bound

Q ≤ Qmax

In the following case the optimal consumption is at Q∗ = Qmax =

10 MW. We have a binding constraint and can define a shadow price µ,

which indicates the benefit of relaxing the constraint µ∗ = U ′(Q∗)− λ.
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Consumers can delay their consumption

Besides changing the amount of electricity consumption, consumers can

also shift their consumption in time.

For example electric storage heaters use cheap electricity at night to

generate heat and then store it for daytime.

The LHC particle accelerator does not run in the winter, when prices are

higher (see http://home.cern/about/engineering/powering-cern).

Summer demand: 200 MW, corresponds to a third of Geneva, equal to

peak demand of Rwanda (!); winter only 80 MW.
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Consumers can also move location

Aluminium smelting is an electricity-intensive process. Aluminium

smelters will often move to locations with cheap and stable electricity

supplies, such as countries with lots of hydroelectric power. For example,

73% of Iceland’s total power consumption in 2010 came from aluminium

smelting.

Aluminium costs around US$ 1500/ tonne to produce.

Electricity consumption: 15 MWh/tonne.

At Germany consumer price of e300 / MWh, this is e4500 / tonne.

Uh-oh!!!

If electricity is 50% of cost, then need $750/tonne to go on electricity ⇒
750/15 $/MWh = 50 $/MWh.
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Summary: Consumers and Generators

Generators: A generator has a cost or supply function C (Q) in e/h,

which gives the costs (of fuel, etc.) for a given rate of electricity

generation Q MW. If the market price is λ e/MWh, the revenue is λQ

and the generator should adjust their generation rate Q to maximise their

net generation surplus, i.e. their profit:

max
Q

[λQ − C (Q)]

Consumers: Their utility or value function U(Q) in e/h is a measure of

their benefit for a given consumption rate Q. For a given price λ they

adjust their consumption rate Q such that their net surplus is maximised:

max
Q

[U(Q)− λQ]
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Supply and Demand at a Single Node



Setting the quantity and price

Total welfare (consumer and generator surplus) is maximised if the total

quantity is set where the marginal cost and marginal utility curves meet.

If the price is also set from this point, then the individual optimal actions

of each actor will achieve this result in a perfect decentralised market.
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The result of optimisation

This is the result of maximising the total economic welfare, the sum of

the consumer and the producer surplus for consumers with consumption

QB
i and generators generating with rate QS

i :

max
{QB

i },{Q
S
i }

[∑
i

Ui (Q
B
i )−

∑
i

Ci (Q
S
i )

]

subject to the supply equalling the demand in the balance constraint:∑
i

QB
i −

∑
i

QS
i = 0 ↔ λ

and any other constraints (e.g. limits on generator capacity, etc.).

Market price λ is the shadow price of the balance constraint, i.e. the cost

of supply an extra increment 1 MW of demand.
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Why decentralised markets work (in theory)

We will now show our main result:

Welfare-maximisation through decentralised markets

The welfare-maximising combination of production and consumption can

be achieved by the decentralised profit-maximising decisions of producers

and the utility-maximising decisions of consumers, provided that:

• The market price is equal to the constraint marginal value of the

overall supply-balance constraint in the welfare maximisation

problem

• All producers and consumers are price-takers
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KKT and Welfare Maximisation 1/2

Apply KKT now to maximisation of total economic welfare:

max
{QB

i },{Q
S
i }

f ({QB
i }, {QS

i }) =

[∑
i

Ui (Q
B
i )−

∑
i

Ci (Q
S
i )

]
subject to the balance constraint:

g({QB
i }, {QS

i }) =
∑
i

QB
i −

∑
i

QS
i = 0 ↔ λ

and any other constraints (e.g. limits on generator capacity, etc.).

Our optimisation variables are {x} = {QB
i } ∪ {QS

i }.

We get from stationarity:

0 =
∂f

∂QB
i

−
∑
i

λ∗
∂g

∂QB
i

= U ′i (Q
B
i )− λ∗ = 0

0 =
∂f

∂QS
i

−
∑
i

λ∗
∂g

∂QS
i

= −C ′i (QS
i ) + λ∗ = 0
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KKT and Welfare Maximisation 2/2

So at the optimal point of maximal total economic welfare we get the

same result as if everyone maximises their own welfare separately:

U ′i (Q
B
i ) = λ∗

C ′i (QS
i ) = λ∗

This is the CENTRAL result of microeconomics.

If we have further inequality constraints that are binding, then these

equations will receive additions with µ∗i > 0.
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Power Production Right Now

Here’s the forecast of load, wind, solar and conventional generation right

now in Germany (link):
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Supply-Demand Curve Right Now

Here’s the supply-demand curve for Germany-Austria right now (link)
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Effect of varying demand for fixed generation
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Example market 1/3
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Example market 2/3
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Example market 3/3
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Effect of varying renewables: fixed demand, no wind
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Effect of varying renewables: fixed demand, 35 GW wind
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Spot market price development

As a result of so much zero-marginal-cost renewable feed-in, spot market

prices have been steadily decreasing:
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Merit Order Effect

To summarise:

• Renewables have zero marginal cost

• As a result they enter at the bottom of the merit order, reducing the

price at which the market clears

• This pushes non-CHP gas and hard coal out of the market

• This is unfortunate, because among the fossil fuels, gas and hard

coal are the most flexible and produce the lowest CO2 per MWh

• It also massively reduces the profits that nuclear and brown coal

make

• Will there be enough backup power plants for times with no

wind/solar?

This has led to lots of political tension...
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Optimisation Energy System Opera-

tion: Network



Simplify representation of consumers and generators

We will now return to the simplified world of last lecture, where all the

generator cost functions are linear

Cs(gs) = osgs

and each generator has limited output 0 ≤ gs ≤ Gs .

[The variable gs indexed by s is equivalent to QS
i labelled by i above.]

We also fix the demand so that it is not subject to optimisation. This is

equivalent to having a single consumer with very high marginal utility

V >> os ∀s and d <
∑

s Gs for an inelastic demand level d

U(QB) = VQB for QB ≤ d

U(QB) = 0 for QB > d
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Simplify representation of consumers and generators

In this case we get for our welfare maximisation:

max
QB ,{gs}

[
VQB −

∑
s

osgs

]

subject to:

QB −
∑
s

gs = 0 ↔ λ

QB ≤ d

gs ≤ Gs ↔ µ̄s

−gs ≤ 0 ↔ µ
¯s

Since V >> os we will always get QB∗ = d and we can drop this from

the optimisation.
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Simplify representation of consumers and generators

We thus get:

max
{gs}

[
Vd −

∑
s

osgs

]

subject to:

d −
∑
s

gs = 0 ↔ λ

gs ≤ Gs ↔ µ̄s

−gs ≤ 0 ↔ µ
¯s
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Simplify representation of consumers and generators

Finally we drop the constant utility Vd from the objective function (it

has no influence on the results) and use

min
x∈X

f (x) = −max
x∈X

[−f (x)]

to turn the maximisation of total welfare into a cost minimisation

problem:

min
{gs}

∑
s

osgs

such that: ∑
s

gs − d = 0 ↔ λ

gs ≤ Gs ↔ µ̄s

−gs ≤ 0 ↔ µ
¯s

NB: Because the signs of the KKT multipliers change when we go from

maximisation to minimisation, we’ve also changed the sign of the balance

constraint to keep the marginal price λ positive.
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Several generators at different nodes in a network

Now let’s suppose we have several nodes i with different loads and

different generators, with flows f` in the network lines.

Now we have additional optimisation variables f` AND additional

constraints:

min
{gi,s},{f`}

∑
i,s

oi,sgi,s

such that demand is met either by generation or by the network at each

node i ∑
s

gi,s − di =
∑
`

Ki`f` ↔ λi

and generator constraints are satisified

gi,s ≤ Gi,s ↔ µ̄i,s

−gi,s ≤ 0 ↔ µ
¯i,s
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Several generators at different nodes in a network

In addition we have constraints on the line flows.

First, they have to satisfy Kirchoff’s Voltage Law around each closed

cycle c : ∑
c

C`cx`f` = 0 ↔ λc

and in addition the flows cannot overload the thermal limits, |f`| ≤ F`

f` ≤ F` ↔ µ̄`

−f` ≤ −F` ↔ µ
¯`
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Simplest example: two nodes connected by a single line

At node 1 we have demand of d1 = 100 MW and a generator with costs

o1 = 10 e/MWh and a capacity of G1 = 300 MW.

At node 2 we have demand of d2 = 100 MW and a generator with costs

o1 = 20 e/MWh and a capacity of G2 = 300 MW.

What happens if the capacity of the line connecting them is F` = 0?

What about F` = 50 MW?

What about F` =∞?
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Storage Optimisation



Storage equations

Now, like the network case where we add different nodes i with different

loads, for storage we have to consider different time periods t.

Label conventional generators by s, storage by r and now minimise

min
{gi,s,t},{gi,r,t,store},{gi,r,t,dispatch},{f`,t}∑
i,s,t

oi,sgi,s,t +
∑
i,r ,t

oi,r ,store gi,r ,t,store +
∑
i,r ,t

oi,r ,dispatch gi,r ,t,dispatch


The power balance constraints are now (cf. Lecture 4) for each node i

and time t that the demand is met either by generation, storage or

network flows:∑
s

gi,s,t +
∑
r

(gi,r ,t,dispatch − gi,r ,t,store)− di,t =
∑
`

Ki`f`,t ↔ λi,t
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Storage equations

We have constraints on normal generators

0 ≤ gi,s,t ≤ Gi,s

and on the storage

0 ≤ gi,r ,t,dispatch ≤ Gi,r ,dispatch

0 ≤ gi,r ,t,store ≤ Gi,r ,store

The energy level of the storage is given by

ei,r ,t = η0ei,r ,t−1 + η1gi,r ,t,store − η−12 gi,r ,t,dispatch

and limited by

0 ≤ ei,r ,t ≤ Ei,r
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Storage equations

Finally for the flows we repeat the constraints for each time t.

We have KVL for each cycle c and time t∑
c

C`cx`f`,t = 0 ↔ λc,t

and in addition the flows cannot overload the thermal limits, |f`,t | ≤ F`

f`,t ≤ F` ↔ µ̄`,t

−f`,t ≤ −F` ↔ µ
¯`,t
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Preview: Investment optimisation

Preview for next time:

Next time we will also optimise investment in the capacities of

generators, storage and network lines, to maximise long-run efficiency.

We will promote the capacities Gi,s , Gi,r ,∗, Ei,r and F` to optimisation

variables.
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