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Optimisation: Motivation



What to do about variable renewables?

Backup energy costs money and may also cause CO2 emissions.

Curtailing renewable energy is also a waste.

We have discussed the first 3 of the 4 solutions suggested in the first

lecture:

1. Smoothing stochastic variations of renewable feed-in over larger

areas, e.g. the whole of European continent.

2. Using storage to shift energy from times of surplus to deficit.

3. Shifting demand to different times, when renewables are abundant.

4. Consuming the electricity in other sectors, e.g. transport or heating.

Before tackling sector-coupling, we will take a few lectures to discuss

optimisation in energy networks as a tool to assess these options.
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Why optimisation?

In the energy system we have lots of degrees of freedom:

1. Power plant and storage dispatch

2. Renewables curtailment

3. Dispatch of network elements (e.g. High Voltage Direct Current

(HVDC) lines)

4. Capacities of everything when considering investment

but we also have to respect physical constraints:

1. Meet energy demand

2. Do not overload generators or storage

3. Do not overload network

and we want to do this while minimising costs. Solution: optimisation.
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Optimisation: Introduction



A simple optimisation problem

Consider the following problem. We have a function f (x , y) of two

variables x , y ∈ R
f (x , y) = 3x

and we want to find the maximum of this function in the x − y plane

max
x,y∈R

f (x , y)

subject to the following constraints

x + y ≤ 4 (1)

x ≥ 0 (2)

y ≥ 1 (3)

Optimal solution: x∗ = 3, y∗ = 1, f (x∗, y∗) = 9.
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Another simple optimisation problem

We can also have equality constraints. Consider the maximum of this

function in the x − y − z space

max
x,y ,z∈R

f (x , y , z) = (3x + 5z)

subject to the following constraints

x + y ≤ 4

x ≥ 0

y ≥ 1

z = 2

Optimal solution: x∗ = 3, y∗ = 1, z∗ = 2, f (x∗, y∗, z∗) = 19.
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Energy system mapping to an optimisation problem

This optimisation problem has the same basic form as our energy system

considerations:

Objective function to min-

imise
↔

Minimise total costs

Optimisation variables
↔

Physical degrees of freedom

(power plant dispatch, etc.)

Constraints
↔

Physical constraints (over-

loading, etc.)

Before we apply optimisation to the energy system, we’ll do some theory.
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Optimisation: Theory



Optimisation problem

We have an objective function f : Rk → R

max
x

f (x)

[x = (x1, . . . xk)] subject to some constraints within Rk :

gi (x) = ci ↔ λi i = 1, . . . n

hj(x) ≤ dj ↔ µj j = 1, . . .m

λi and µj are the KKT multipliers (basically Lagrange multipliers) we

introduce for each constraint equation; it measures the change in the

objective value of the optimal solution obtained by relaxing the constraint

(shadow price).
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Feasibility

The space X ⊂ Rk which satisfies

gi (x) = ci ↔ λi i = 1, . . . n

hj(x) ≤ dj ↔ µj j = 1, . . .m

is called the feasible space.

It will have dimension lower than k if there are independent equality

constraints.

It may also be empty (e.g. x ≥ 1, x ≤ 0 in R), in which case the

optimisation problem is called infeasible.

It can be convex or non-convex.

If all the constraints are affine, then the feasible space is a convex

polygon.
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Lagrangian

We now study the Lagrangian function

L(x , λ, µ) = f (x)−
∑
i

λi [gi (x)− ci ]−
∑
j

µj [hj(x)− dj ]

We’ve built this function using the variables λi and µj to better

understand the optimal solution of f (x) given the constraints.

The optima of L(x , λ, µ) tell us important information about the optima

of f (x) given the constraints.

It is entirely analogous to the physics Lagrangian L(x , ẋ , λ) except we

have no explicit time dependence ẋ and we have additional constraints

which are inequalities.

We can already see that if ∂L
∂λi

= 0 then the equality constraint gi (x) = c

will be satisfied.

[Beware: ± signs appear differently in literature, but have been chosen

here such that λi = ∂L
∂ci

and µj = ∂L
∂dj

.]
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KKT conditions

The Karush-Kuhn-Tucker (KKT) conditions are necessary conditions that

an optimal solution x∗, µ∗, λ∗ always satisfies (up to some regularity

conditions):

1. Stationarity: For l = 1, . . . k

∂L
∂xl

=
∂f

∂xl
−
∑
i

λ∗i
∂gi
∂xl
−
∑
j

µ∗j
∂hj
∂xl

= 0

2. Primal feasibility:

gi (x
∗) = ci

hj(x
∗) ≤ dj

3. Dual feasibility: µ∗j ≥ 0

4. Complementary slackness: µ∗j (hj(x
∗)− dj) = 0
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Complementarity slackness for inequality constraints

We have for each inequality constraint

µ∗j ≥ 0

µ∗j (hj(x
∗)− dj) = 0

So either the inequality constraint is binding

hj(x
∗) = dj

and we have µ∗j ≥ 0.

Or the inequality constraint is NOT binding

hj(x
∗) < dj

and we therefore MUST have µ∗j = 0.

If the inequality constraint is non-binding, we can remove it from the

optimisation problem, since it has no effect on the optimal solution.
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Nota Bene

1. The KKT conditions are only sufficient for optimality of the solution

under certain conditions, e.g. linearity of the problem.

2. Since at the optimal solution we have gi (x
∗) = ci for equality

constraints and µ∗j (hj(x
∗)− dj) = 0, we have

L(x∗, λ∗, µ∗) = f (x∗)
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Return to simple optimisation problem

We want to find the maximum of this function in the x − y plane

max
x,y∈R

f (x , y) = 3x

subject to the following constraints (now with KKT multipliers)

x + y ≤ 4 ↔ µ1

−x ≤ 0 ↔ µ2

−y ≤ −1 ↔ µ3

We know the optimal solution in the primal variables

x∗ = 3, y∗ = 1, f (x∗, y∗) = 9.

What about the dual variables µi?

Since the second constraint is not binding, by complementarity

µ∗2(−x∗ − 0) = 0 we have µ∗2 = 0. To find µ∗1 and µ∗3 we have to do

more work.
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Simple problem with KKT conditions

We use stationarity for the optimal point:

0 =
∂L
∂x

=
∂f

∂x
−
∑
i

λ∗i
∂gi
∂x
−
∑
j

µ∗j
∂hj
∂x

= 3− µ1 + µ2

0 =
∂L
∂y

=
∂f

∂y
−
∑
i

λ∗i
∂gi
∂y
−
∑
j

µ∗j
∂hj
∂y

= −µ1 + µ3

From which we find:

µ∗1 = 3− µ∗2 = 3

µ∗3 = µ∗1 = 3

Check interpretation: µj = ∂L
∂dj

with dj → dj + ε.
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Return to another simple optimisation problem

We want to find the maximum of this function in the x − y − z space

max
x,y ,z∈R

f (x , y) = 3x + 5z

subject to the following constraints (now with KKT multipliers)

x + y ≤ 4 ↔ µ1

−x ≤ 0 ↔ µ2

−y ≤ −1 ↔ µ3

z = 2 ↔ λ

We know the optimal solution in the primal variables

x∗ = 3, y∗ = 1, z∗ = 2, f (x∗, y∗, z∗) = 19.

What about the dual variables µi , λ?

We get same solutions to µ∗1 = 3, µ∗2 = 0, µ∗3 = 3 because they’re not

coupled to z direction. What about λ∗?
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Another simple problem with KKT conditions

We use stationarity for the optimal point:

0 =
∂L
∂z

=
∂f

∂z
−
∑
i

λ∗i
∂gi
∂z
−
∑
j

µ∗j
∂hj
∂z

= 5− λ∗

From which we find:

λ∗ = 5

Check interpretation: λi = ∂L
∂ci

with ci → ci + ε.
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Optimisation Energy System Opera-

tion: Single Node



Simplest example: one generator, fixed demand

These sections will follow the notation of Lecture 4.

Suppose we have a single node with demand given by d and a single

conventional generator with dispatch g (our free parameter to optimise)

such that the demand is met:

g − d = 0 ↔ λ

In addition, the dispatch g cannot be negative or overload the capacity G :

g ≤ G ↔ µ̄

−g ≤ 0 ↔ µ
¯

Suppose in addition it costs o to dispatch the generator by g (o for

operating costs). We try to minimise costs, i.e.

min
g

og

such that the above three constraints are satisfied.
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Simplest example: one generator, fixed demand

The solution is trivial. The generator dispatches to meet the demand

g∗ = d

If d > G then the problem is infeasible (has no solution). If the demand

is non-zero then since g∗ > 0 by complementarity we have µ
¯

∗ = 0. If

d < G then g∗ < G and by complementarity we have µ̄∗ = 0. To

compute λ∗ we use stationarity:

0 =
∂L
∂g

=
∂f

∂g
−
∑
i

λ∗i
∂gi
∂g
−
∑
j

µ∗j
∂hj
∂g

= o − λ∗ − µ̄∗ + µ
¯

∗

Thus λ∗ = o, which is the cost per unit of supplying extra demand.

[If d = G , things get singular: λ =∞, since there is no way to supply

the extra demand.]

[There has been a subtle sign redefinition here for L since

minx f (x) = −maxx [−f (x)]. Sorry.]
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Next simplest example: several generators, fixed demand

Suppose we have several generators with dispatch gs and strictly ordered

operating costs os such that os < os+1. We now minimise

min
{gs}

∑
s

osgs

such that demand is met∑
s

gs − d = 0 ↔ λ

and generator constraints are satisified

gs ≤ Gs ↔ µ̄s

−gs ≤ 0 ↔ µ
¯s
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Next simplest example: several generators, fixed demand

Stationarity gives us for each s:

0 = os − λ∗ − µ̄∗s + µ
¯

∗
s

and from complementarity we get

µ̄s(g∗s − Gs) = 0

µ
¯s
g∗s = 0

We can see by inspection that we will dispatch the cheapest generation

first. Find m such that
∑m−1

s=1 Gs < d <
∑m

s=1 Gs .

For s ≤ m − 1 we have g∗s = Gs , µ
¯

∗
s

= 0, µ̄∗s = os − λ∗.

For s = m we have g∗m = d −
∑m−1

s=1 Gs to cover what’s left of the

demand. Since 0 < g∗m < Gm we have µ
¯

∗
m

= µ̄∗m = 0 and therefore

λ∗ = om.
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Next simplest example: several generators, fixed demand

Specific example of two generators with G1 = 300 MW, G2 = 400 MW,

o1 = 10 e/MWh, o2 = 30 e/MWh and d = 500 MW.

In this case m = 2, g∗1 = G1 = 300 MW, g∗2 = d − G1 = 200 MW,

λ∗ = o2, µ
¯i

= 0, µ̄2 = 0 and µ̄1 = o1 − o2.
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Next simplest example: several generators, fixed demand

If λ∗ sets the market price, then the profits that generators make by

having costs below the market price is called the generator surplus. The

fact that consumers are not price-responsive means that they are willing

to pay a lot for their electricity; the ‘profit’ they make by paying less than

they are prepared to is called consumer surplus. Together, these form

social welfare, which economists like to maximise.
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Optimisation Energy System Opera-

tion: Network



Several generators at different nodes in a network

Now let’s suppose we have several nodes i with different loads and

different generators, with flows f` in the network lines.

Now we have additional optimisation variables f` AND additional

constraints:

min
{gi,s},{f`}

∑
i,s

oi,sgi,s

such that demand is met either by generation or by the network∑
s

gi,s − di =
∑
`

Ki`f` ↔ λi

and generator constraints are satisified

gi,s ≤ Gi,s ↔ µ̄i,s

−gi,s ≤ 0 ↔ µ
¯i,s
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Several generators at different nodes in a network

In addition we have constraints on the line flows.

First, they have to satisfy Kirchoff’s Voltage Law around each closed

cycle c : ∑
c

C`cx`f` = 0 ↔ λc

and in addition the flows cannot overload the thermal limits, |f`| ≤ F`

f` ≤ F` ↔ µ̄`

−f` ≤ −F` ↔ µ
¯`
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Simplest example: two nodes connected by a single line

At node 1 we have demand of d1 = 100 MW and a generator with costs

o1 = 10 e/MWh and a capacity of G1 = 300 MW.

At node 2 we have demand of d2 = 100 MW and a generator with costs

o1 = 20 e/MWh and a capacity of G2 = 300 MW.

What happens if the capacity of the line connecting them is F` = 0?

What about F` = 50 MW?

What about F` =∞?
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Next time: Storage and capacity optimisation

Given a desired CO2 reduction, what is the most cost-effective system?

Min

(
Yearly system

costs

)
=
∑
n

(
Annualised

capital costs

)
+
∑
n,t

(Marginal costs)

subject to

• meeting energy demand at each node n (e.g. countries) and time t

(e.g. hours of year)

• wind, solar, hydro (variable renewables) availability ∀n, t

• electricity/gas transmission constraints between nodes

• (installed capacity) ≤ (geographical potential)

• CO2 constraint / RE share covering demand

• Constraints on total volume of transmission lines
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