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Admin



Credit Points

This course has 3 Credit Points (CPs).

To obtain the credit points, you should turn up to at least 12 lectures

(out of 14) and 5 tutorials (out of 7). Exceptions can be made if you

started the course late or you have personal extenuating circumstances.
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Benotung

To get a Note at the end, there will be a mündliche Prüfung (oral exam)

in the week after the end of the semester, probably on one of July

25th/26th/27th 2017.
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Loose ends from last time



Rotating field in a three-phase induction motor

A brilliant insight (credited to Tesla, but the history is complicated) was

that with three-phase power, you can place your wires spaced at 2π/3 to

create a rotating magnetic field

https://www.youtube.com/watch?v=LtJoJBUSe28

which can then induce a current in a rotor cage, which then experiences a

torque thanks to the magnetic field: this is the principle of the induction

motor.

It would not be possible to create such a rotating field with a

single-phase or two-phase system.
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Computing the Linear Power Flow



Framing the load flow problem

Suppose we have N nodes labelled by i , and L edges labelled by `

forming a directed graph G .

Suppose at each node we have a power imbalance pi (pi > 0 means its

generating more than it consumes and pi < 0 means it is consuming

more than it).

Since we cannot create or destroy energy (and we’re ignoring losses):∑
i

pi = 0

Question: How do the flows f` in the network relate to the nodal power

imbalances?

Answer: According to the impedances (generalisation of resistance for

oscillating voltage/current) and the corresponding voltages.
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Kirchhoff’s Current Law (KCL)

KCL says (in this linear setting) that the nodal power imbalance at node

i is equal to the sum of direct flows arriving at the node. This can be

expressed compactly with the incidence matrix

pi =
∑
`

Ki`f` ∀i
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Kirchhoff’s Voltage Law (KVL)

KVL says that the sum of voltage differences across edges for any closed

cycle must add up to zero.

If the voltage at any node is given by θi (this is infact the voltage angle -

more next week) then the voltage difference across edge ` is∑
i

Ki`θi

And Kirchhoff’s law can be expressed using the cycle matrix encoding of

independent cycles∑
`

C`c
∑
i

Ki`θi = 0 ∀c

[Automatic, since we already said KC = 0.]
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Kirchhoff’s Voltage Law (KVL)

If we express the flow on each line in terms of the voltage angle (a

relative of V = IR) then for a line ` with reactance x`

f` =
θi − θj
x`

=
1

x`

∑
i

Ki`θi

KVL now becomes ∑
`

C`cx`f` = 0 ∀c
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Solving the equations

If we combine

f` =
1

x`

∑
i

Ki`θi

with Kirchhoff’s Current Law we get

pi =
∑
`

Ki`f` =
∑
`

Ki`
1

x`

∑
j

Kj`θj

This is a weighted Laplacian. If we write Bk` for the diagonal matrix with

B`` = 1
x`

then

L = KBK t

and we get a discrete Poisson equation for the θi sourced by the pi

pi =
∑
j

Lijθj

We can solve this for the θi and thus find the flows.
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Solving the equations

Given pi at every node, we want to find the flows f`. We have the

equations

pi =
∑
j

Lijθj

f` =
1

x`

∑
i

Ki`θi

Basic idea: invert L to get θi in terms of pi

θi =
∑
k

(L−1)ikpk

then insert to get the flows as a linear function of the power injections pi

f` =
1

x`

∑
i,k

Ki`(L
−1)ikpk =

∑
k

PTDF`kpk
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Inverting Laplacian L

There is one small catch: L is not invertible since we saw last time it has

(for a connected network) one zero eigenvalue, with eigenvector

(1, 1, . . . 1), since by construction
∑

j Lij = 0.

This is related to a gauge freedom to add a constant to all voltage angles

θi → θi + c

(corresponding to the zero eigenvector of L) which does not affect

physical quantities:

pi =
∑
j

Lij(θj + c) =
∑
j

Lij(θj)

f` =
1

x`

∑
i

Ki`(θi + c) =
1

x`

∑
i

Ki`(θi )

Typically we choose a slack or reference bus such that θ0 = 0.
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Inverting Laplacian L

Two solutions:

1. Set θ0 = 0, invert the lower-right (N − 1)× (N − 1) part of L to find

the remaining {pi}i=1,...N−1 in terms of the {θi}i=1,...N−1, then derive p0
from

∑
i pi = 0.

2. Use the Moore-Penrose pseudo-inverse.

Write L in terms of its basis of orthonormal eigenvectors

L =
∑
n

|Φn〉λn 〈Φn|

then the Moore-Penrose pseudo-inverse is:

L† =
∑

n|λn 6=0

|Φn〉 〈Φn|
λn

Check:

L†L =
∑

n|λn 6=0

|Φn〉 〈Φn| = I − |Φ0〉 〈Φ0|
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4-node example

Ki` =


1 0 0 0

−1 1 1 0

0 −1 0 1

0 0 −1 −1



Lij =


1 −1 0 0

−1 3 −1 −1

0 −1 2 −1

0 −1 −1 2



PTDF`i =


0 −1 −1 −1

0 0 −2/3 −1/3

0 0 −1/3 −2/3

0 0 1/3 −1/3


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PTDF as sensitivity

Can also ‘experimentally’ determine the Power Transfer Distribution

Factors (PTDF) by choosing a slack bus (in this case bus 1).

Each column (labelled by i) is then the resulting line flows if we have a

simple power transfer from bus i to the slack pi = 1 and p1 = −1.

PTDF`i =


0 −1 −1 −1

0 0 −2/3 −1/3

0 0 −1/3 −2/3

0 0 1/3 −1/3


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Consequences of limiting power trans-

fers



Thermal limits

You cannot pass infinite current through a transmission line.

As it warms, it sags, then it will hit a building/tree and cause a

short-circuit. [Or you may get voltage instability.]

Typically each line has a well-defined thermal limit on the amount of

current that can flow through it, which translates to a limit on the active

power in the linear approximation.

|f`| ≤ F`

These limits may prevent the transfer of power.
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Adjusting generator dispatch to avoid overloading

To avoid overloading the power lines, we must adjust our generator

output (or the demand) so that the power imbalances do not overload

the network.

We will now generalise and adjust our notation.

From lecture 2 we had for a single node:

−pt = mt − bt + ct = dt −Wwt − Sst − bt + ct = 0

where pt was the nodal power balance, mt was the mismatch (load dt
minus wind Wwt and solar Sst), bt was the backup power and ct was

curtailment.

We generalised this to multiple nodes labelled by i

−pi,t = mi,t − bi,t + ci,t = di,t −Wiwi,t − Si si,t − bi,t + ci,t

where now we don’t enforce pi,t = 0 but
∑

i pi,t = 0 for all t.
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Adjusting generator dispatch to avoid overloading

Now we write the dispatch of all generators at node i (wind, solar,

backup) labelled by technology s as gi,s,t (i labels node, s technology

and t time) so that we have a relation between load di,t , generation gi,s,t
and network flows f`,t

pi,t =
∑
s

gi,s,t − di,t =
∑
`

Ki`f`,t

Where s runs over the wind, solar and backup capacity generators (e.g.

hydro or natural gas) at the node.

A dispatchable generator’s gi,s,t output can be controlled within the

limits of its power capacity Gi,s

0 ≤ gi,s,t ≤ Gi,s
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Variable generation constraints

For a renewable generator we have time series of availability

0 ≤ Gi,s,t ≤ 1 (the st and wt before; W and S are the capacity Gi,s):

0 ≤ gi,s,t ≤ Gi,s,tGi,s ≤ Gi,s

Curtailment corresponds to the case where gi,s,t < Gi,s,tGi,s :

gi,s,t

Gi,s,tGi,s

Gi,s
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Germany curtailment example

See https://pypsa.org/examples/scigrid-lopf-then-pf.html.
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European transmission versus backup energy

Consider backup energy in a simplified European grid:

Transmission lines

Country nodes
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DE versus EU backup energy from last time

Germany needed backup generation for 31% of total load:

0 20 40 60 80

Percentage of time during year

100

50

0

50

M
is

m
a
tc

h
 [

G
W

]

backup

curtailment

Europe needed Backup generation for only 24% of the total load:

0 20 40 60 80

Percentage of time during year

400

200

0

200

400

M
is

m
a
tc

h
 [

G
W

]

backup

curtailment

26



European transmission versus backup energy

Transmission needs across a fully renewable European power system by

Rodriguez, Becker, Andresen, Heide, Greiner, Renewable Energy, 2014
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http://www.sciencedirect.com/science/article/pii/S0960148113005351


Principles of electricity storage



Basic idea of storage

Networks were used to shift power imbalances between different places,

i.e. in space. Electricity storage can shift power in time.

01
Jul

2011

02 03 04 05 06 07
0

20

40

60

80

100

120

140

P
o
w

e
r 

[G
W

]

consumed

backup

curtailment

29



Storage consistency

Storage units, such as batteries or hydrogen storage, can both dispatch

power within a certain capacity:

0 ≤ gi,s,t,dispatch ≤ Gi,s,dispatch

and consume power to store energy:

0 ≤ gi,s,t,store ≤ Gi,s,store

The total power can then be written:

gi,s,t = gi,s,t,dispatch − gi,s,t,store

There is also a limit on the total energy ei,s,t at each time

0 ≤ ei,s,t = −
∫ t

gi,s,t′dt
′ ≤ Ei,s

where Ei,s is the energy capacity (in MWh). Or in iterative form

0 ≤ ei,s,t = ei,s,t−1 + gi,s,t,store − gi,s,t,dispatch ≤ Ei,s
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Continuous example

Consider a single node with a constant demand

d(t) = D

and a renewable wind generator with a capacity G = 2D and an

availability time series

G (t) =
1

2
(1 + sin(ωt))

so that

〈G (t)G 〉 = D
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Mismatch

Our mismatch is now

m(t) = d(t)− GG (t) = −D sin(ωt)

For D = 1, ω = 1:
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Storage Power

To balance this, we need a storage unit with a power profile to match the

mismatch

gs(t) = m(t) = −D sin(ωt)

This will have power capacities Gs,store = Gs,dispatch = D.
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Storage Energy

How much energy capacity Es do we need? The energy profile is:

es(t) =

∫ t

0

(−gs(t ′))dt ′ = D

∫ t

0

sin(ωt ′)dt ′ =
D

ω
[1− cos(ωt)]

so Es = maxt{es(t)} = 2D
ω . Faster oscillations ⇒ less energy capacity.
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Efficiency losses

There are a few extra details to add now. First, no renewable has a

perfectly regular sinusoidal profile.

Second, the iterative integration equation for the storage energy

ei,s,t = ei,s,t−1 + gi,s,t,store − gi,s,t,dispatch

needs to be amended for efficiency losses η

ei,s,t = η0ei,s,t−1 + η1gi,s,t,store − η−12 gi,s,t,dispatch
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Different storage units have different parameters

We can relate the power capacity Gs to the energy capacity Es with the

maximum number of hours the storage unit can be charged at full power

before the energy capacity is full, Es = max-hours ∗ Gs .

Battery Hydrogen Pumped-Hydro Water Tank

η0 0 0 0 depends on size

η1 0.9 0.75 0.9 0.9

η2 0.9 0.58 0.9 0.9

max-hours 2-10 weeks 4-10 depends on size

euro per kW [Gs ] 300 300+450 depends low

euro per kWh [Es ] 200 10 depends low

Parameters are roughly based on Budischak et al, 2012 with projections

for 2030.
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