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Single location versus country versus

continent



Variability: Single wind site in Berlin

Looking at the wind output of a single wind plant over two weeks, it is

highly variable, frequently dropping close to zero and fluctuating strongly.
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Variability: Single country: Germany

For a whole country like Germany this results in valleys and peaks that are

somewhat smoother, but the profile still frequently drops close to zero.
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Variability: A continent: Europe

If we can integrate the feed-in of wind turbines across the European

continent, the feed-in is considerably smoother: we’ve eliminated most

valleys and peaks.
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Duration curve: Berlin

A duration curve shows the feed-in for the whole year, re-ordered by from

highest to lowest value. For a single location there are many hours with

no feed-in.
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Duration curve: Germany

For a whole country there are fewer peaks and fewer hours with no

feed-in.
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Duration curve: Europe

For the whole of Europe there are no times with zero feed-in.
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Statistical comparison

Area Mean Standard deviation

Berlin 0.21 0.26

Germany 0.26 0.24

Europe (including offshore) 0.36 0.19
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Mismatch between load and renewables

How does the mismatch change as we integrate over larger areas?

If we have for each time t a demand of `t and a ‘per unit’ availability wt

for wind and st for solar, then if we have W MW of wind and S MW of

solar, the effective residual load or mismatch is

mt = `t −Wwt − Sst

We choose W and S such that on average we cover all the load

〈mt〉 = 0

and so that the 70% of the energy comes from wind and 30% from solar

(W = 147 GW and S = 135 GW for Germany).

This means

W 〈wt〉 = 0.7〈`t〉 S〈st〉 = 0.3〈`t〉
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Mismatch between load and renewables

Let pt be the balance of power at each time. Because we cannot create

or destroy energy, we need pt = 0 at all times.

If the mismatch is positive mt > 0, then we need backup power bt = mt

to cover the load in the absence of renewables, so that

pt = mt − bt = `t −Wwt − Sst − bt = 0

If the mismatch is negative mt < 0 then we need curtailment ct = −mt

to reduce the excess feed-in from renewables, so that

pt = mt + ct = `t −Wwt − Sst + ct = 0

At any one time we have either backup or curtailment

pt = mt − bt + ct = `t −Wwt − Sst − bt + ct = 0
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Mismatch for Germany

Backup generation needed for 31% of the total load.

Peak mismatch is 91% of peak load (around 80 GW).

0 20 40 60 80

Percentage of time during year

100

50

0

50

M
is

m
a
tc

h
 [

G
W

]

backup

curtailment

13



Mismatch for Europe

Requires 750 GW each of onshore wind and solar.

Backup generation needed for only 24% of the total load.

Peak mismatch is 79% of peak load (around 500 GW).
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Conclusions

• Integration over a larger area smooths out the fluctuations of

renewables, particularly wind

• Wind backs up wind

• This means we need less backup energy.

• and less backup capacity.
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Greiner papers

Cost-optimal design of a simplified, highly renewable pan-European

electricity system by Rolando A. Rodriguez, Sarah Becker, Martin

Greiner, Energy 83 (2015) 658-668
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http://www.sciencedirect.com/science/article/pii/S0360544215002212
http://www.sciencedirect.com/science/article/pii/S0360544215002212


Flexibility Requirements

Integration of wind and solar power in Europe: Assessment of flexibility

requirements by Huber, Dimkova, Hamacher, Energy 69 (2014) 236e246

1-hour net load ramp duration curves at the regional, country and

European spatial scales at 50% share of renewables and 20% PV in the

wind/PV mix for the meteorological year 2009.
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http://www.sciencedirect.com/science/article/pii/S0360544214002680
http://www.sciencedirect.com/science/article/pii/S0360544214002680


Big Caveat

There is a big caveat to this analysis.

We’ve assumed that we can move power around Europe without penalty.

However, in reality, we can only transport within restrictions of the power

network.

In general we will have different power imbalances pi,t at each

location/node i and instead of pt = 0 we will have∑
i

pi,t = 0

(neglecting power losses in the network).

Moving excess power to locations of consumption is the role of the

network.
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Networks



Electricity Transport from Generators to Consumers

Electricity is also easy to transport over long distances using the high

voltage transmission grid:

Usually in houses the voltage is 230 V , but in the transmission grid it is

hundreds of thousands of Volts.
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Source: Wikipedia



European transmission network

Flows in the European transmission network must respect both Kirchoff’s

laws for physical flow and the thermal limits of the power lines.

Taking account of network flows and constraints in the electricity market

is a major and exciting topic at the moment.

21

Source: ENTSO-E



Network Bottlenecks and Loop Flows

Electricity is traded in large market zones. Power trades between zones

(“scheduled flows”) do not always correspond to what flows according to

the network physics (“physical flows”). This leads to political tension as

wind from Northern Germany flows to Southern Germany via Poland and

the Czech Republic.

22

Source: THEMA Consulting Group



Beyond two nodes: radial networks

In a radial network there is only one path between any two nodes on the

network.

The power flow is a simple function of the nodal power imbalances.
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Source: Biggar & Hesamzadeh



Beyond two nodes: meshed networks

In a meshed network there are at least two nodes with multiple paths

between them.

The power flow is now a function of the impedances in the network.
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Source: Biggar & Hesamzadeh



Graph Theory



Definition of a network

Our definition (Newman): A network (graph) is a collection of vertices

(nodes) joined by edges (links).

More precise definition (Bollobàs): A graph G is an ordered pair of

disjoint sets (V ,E ) such that E (the edges) is a subset of the set V (2) of

unordered pairs of V (the vertices).
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Edge list representation

• Vertices:

1,2,3,4,5,6

• Edges:

(1,2), (1,3), (1,6), (2,3),

(3,4), (4,5), (4,6)

Definition from graph theory:

• n = 6 vertices: order of

the graph

• m = 7 edges: size of the

graph

27



Adjacency matrix A

Aij =

{
1 if there is an edge between vertices i and j

0 otherwise.

A =



0 1 1 0 0 1

1 0 1 0 0 0

1 1 0 1 0 0

0 0 1 0 1 1

0 0 0 1 0 0

1 0 0 1 0 0



• Diagonal elements are zero.

• Symmetric matrix.

• If there are N vertices, it’s an

N × N matrix. 28



Multigraph

There can be more than one edge between a pair of vertices.

A =



0 1 1 0 0 3

1 0 2 0 0 0

1 2 0 1 0 0

0 0 1 0 1 1

0 0 0 1 0 0

3 0 0 1 0 0
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Self-edges

There can be self-edges (also called self-loops).

A =



0 1 1 0 0 3

1 0 1 0 0 0

1 1 2 1 0 0

0 0 1 2 1 1

0 0 0 1 0 0

3 0 0 1 0 0



• Diagonal elements can be non-zero:

Definition: Aii = 2 for one self-edge. 30



Weighted networks

Weight or strength assigned to each edge.

A =



0 1.4 0.4 0 0 0.8

1.4 0 1.2 0 0 0

0.4 1.2 0 0.2 0 0

0 0 0.2 0 0.2 0

0 0 0 0.2 0 0

0.8 0 0 0.4 0 0



Weights can be both positive or negative.
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Directed Networks (Digraphs)

Edge is pointing from one vertex to another (directed edge).

Aij =

{
1 if there is an edge from j to i

0 otherwise.

A =



0 0 0 0 0 0

1 0 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

1 0 0 1 0 0



In general the adjacency matrix of a directed network is asymetric.
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Degree

• Degree ki of vertex i : Number of edges connected to i .

• Average degree of the network: 〈k〉.

In terms of the adjacency matrix A:

ki =
n∑

j=1

Aij , 〈k〉 =
1

n

∑
i

ki =
1

n

n∑
i=1

n∑
j=1

Aij .

k5 = 1

k2 = k6 = 2

k1 = k3 = k4 = 3

〈k〉 = 2.33
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Examples

(from the free textbook ”Network Science”)
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Degree matrix D

Dij =

{
ki if i = j

0 otherwise.

D =



3 0 0 0 0 0

0 2 0 0 0 0

0 0 3 0 0 0

0 0 0 3 0 0

0 0 0 0 1 0

0 0 0 0 0 2
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Laplacian

L = D− A

L =



3 −1 −1 0 0 −1

−1 2 −1 0 0 0

−1 −1 3 −1 0 0

0 0 −1 3 −1 −1

0 0 0 −1 1 0

−1 0 0 −1 0 2



• L inherits symmetry from D

and A.

• The number of zero eigenvalues

equals the number of connected

components.

• For a set of connected nodes I ,∑
i∈I Lij = 0 for all j .
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Why is it called the Laplacian?

What does this matrix have to do with the second-order Laplacian ∆ we

know and love from continuous physics?

Think of 2d lattice theory.

You can see it’s a Laplacian for a 2d square lattice because you get a term

4ui,j − ui+1,j − ui−1,j − ui,j+1 − ui,j−1 (1)

which is a second-order difference in both x and y directions.

In fact you can do interesting discrete physics with these matrices (more

later...).
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The incidence matrix

For a directed graph (every edge has an orientation) G = (V ,E ) with N

nodes and L edges, the node-edge incidence matrix K ∈ RN×L has

components

Ki` =


1 if edge ` starts at node i

−1 if edge ` ends at node i

0 otherwise

K =


1 0 0 0

−1 1 1 0

0 −1 0 1

0 0 −1 −1
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Incidence matrix properties

The incidence matrix has several important properties.

First, for a given edge `,
∑

i Ki` = 0, i.e. every edge starts at some node

(+1) and ends at some node (-1).

It is related to the Laplacian matrix by

L = KK t

Check the definitions agree:

Lij =
∑
`

Ki`Kj`

for i = j and i 6= j .
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The kernel of the incidence matrix

The kernel of Ki`, i.e. particular combinations of edges which are

annihilated by K , has a very special meaning.

Consider the combination of edges (0, 1,−1, 1)t

K =


1 0 0 0

−1 1 1 0

0 −1 0 1

0 0 −1 −1




0

1

−1

1

 =


0

0

0

0


This corresponds to a closed cycle in the graph.

The matrix K can be interpreted as a boundary operator. A cycle has no

boundary in 0-d. There is a general theory called homology theory, which

can compute topological invariants of manifolds called homology groups.
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Cycle matrix

We can organise the cycles in a matrix C`c , where c labels each cycle.

We have

KC = 0

by definition of C being in the kernel.

The image of K has dimension N − 1 (i.e. the rank of K ), so the number

of cycles (i.e. the nullity of K ) is L− N + 1.

In our case L = 4, N = 4 so there is only 1 cycle

C = (0, 1,−1, 1)t
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Trees

• A collection of trees is called a

forest.

• Trees play an import role for

random graph models.

• In a tree, there is exactly one

path between any pair of

vertices.

• A tree of N vertices always has

exactly N − 1 edges.

• Any connected network with N

vertices and N − 1 edges is a

tree.

• Trees have no cycles.
42



Planar networks

A planar network is a network that can be drawn on a plane without

having any edges cross.

Examples:

• Trees

• Road networks (approximately)

• Power grids (approximately)

• Shared borders between

countries, etc.
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Paths

• Route through the network, from vertex to vertex along the edges

• Defined for both directed and undirected networks

• Special case: self-avoiding paths

• Length of a path: number of edges along the path (”hops”)

• Number of paths of length r between vertices i and j :

N
(r)
ij = [Ar ]ij

• Total number Lr of loops of length r anywhere in the network:

Lr =
n∑

i=1

[Ar ]ii = TrAr .
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Geodesic / shortest paths

• A path between two vertices such that

no shorter path exists

• Geodesic distance between vertices i

and j is the smallest value of r such

that [Ar ]ij > 0.

• Self-avoiding

• In general not unique

• Diameter of a network: Length of the

longest geodesic path between any pair

of vertices

45



Acyclic directed network

• Directed network without closed loops

of edges (DAG)

• Examples: power flow in an electricity

grid, citation network of papers

• Topological ordering: For every

directed edge i → j , vertex i comes

before j in the ordering:

(1,2,3,4,6,9,10,11,12,8,7,5,13)

• With a topological ordering, the

adjacency matrix of an acyclic directed

network is strictly triangular

46



Components of networks

• Subgroups of vertices with no

connections between the respective

groups

• Disconnected network

• Subgroups: components

• Adjacency matrix: Block-diagonal form

47



Computing the Linear Power Flow



Framing the load flow problem

Suppose we have N nodes labelled by i , and L edges labelled by `

forming a directed graph G .

Suppose at each node we have a power imbalance pi (pi > 0 means its

generating more than it consumes and pi < 0 means it is consuming

more than it).

Since we cannot create or destroy energy (and we’re ignoring losses):∑
i

pi = 0

Question: How do the flows f` in the network relate to the nodal power

imbalances?

Answer: According to the impedances (generalisation of resistance for

oscillating voltage/current) and the corresponding voltages.

49



Kirchhoff’s Current Law (KCL)

KCL says (in this linear setting) that the nodal power imbalance at node

i is equal to the sum of direct flows arriving at the node. This can be

expressed compactly with the incidence matrix

pi =
∑
`

Ki`f` ∀i

50



Kirchhoff’s Voltage Law (KVL)

KVL says that the sum of voltage differences across edges for any closed

cycle must add up to zero.

If the voltage at any node is given by θi (this is infact the voltage angle -

more next week) then the voltage difference across edge ` is∑
i

Ki`θi

And Kirchhoff’s law can be expressed using the cycle matrix encoding of

independent cycles∑
`

C`c

∑
i

Ki`θi = 0 ∀c

[Automatic, since we already said KC = 0.]
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Kirchhoff’s Voltage Law (KVL)

If we express the flow on each line in terms of the voltage angle (a

relative of V = IR) then for a line ` with reactance x`

f` =
θi − θj
x`

=
1

x`

∑
i

Ki`θi

KVL now becomes ∑
`

C`cx`f` = 0 ∀c
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Solving the equations

If we combine

f` =
1

x`

∑
i

Ki`θi

with Kirchhoff’s Current Law we get

pi =
∑
`

Ki`f` =
∑
`

Ki`
1

x`

∑
j

Kj`θj

This is a weighted Laplacian. If we write Bk` for the diagonal matrix with

B`` = 1
x`

then

L = KBK t

and we get a discrete Poisson equation for the θi sourced by the pi

pi =
∑
j

Lijθj

We can solve this for the θi and thus find the flows.
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