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Administration



Lectures and Exercise Classes

Lectures:

• Weekly, Wednesdays 14:00 - 16:00, Phys 01.114

• 19.04.2017 until 19.07.2017 (14 lectures)

Exercise Classes:

• Biweekly, Wednesdays 16:00 - 18:00, Phys 01.114

• 19.04.2017 until 12.07.2017 (7 classes)
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Contact Details

Dr. Tom Brown

Postdoctoral Researcher

FIAS (Riedberg)

brown@fias.uni-frankfurt.de

I am a physicist who has specialised in the optimisation of energy systems and the interactions

of complex networks.
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Literature

There is no book which covers all aspects of this course. In particular there is no good source

for the combination of complex network theory and renewables. But there are lots of online

lecture notes. The world of renewables also changes fast...

The following are concise:

• Volker Quashning, “Regenerative Energiesysteme”, Carl Hanser Verlag München, 2015

• Leon Freris, David Infield, “Renewable Energy in Power Systems”, Wiley, 2006

• Göran Andersson Skript, “Elektrische Energiesysteme: Vorlesungsteil

Energieübertragung,” online
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Course Website

You can find the course website:

https://nworbmot.org/courses/complex_renewable_energy_networks/

by following the links from:

https://nworbmot.org/teaching.html

Course notes and other links can be found there.
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Registration for Evaluation

To get an evaluation at the end of the course, you can only have missed 2 of the lectures.

A registration will be passed around in each lecture.

Please sign it.
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Introduction: Balancing Variable Re-

newable Energy



Research questions

1. What infrastructure (wind, solar, hydro generators, heating/cooling units, storage and

networks) does a highly renewable energy system require and where should it go?

2. Given a desired CO2 emissions reduction (e.g. 95% compared to 1990), what is the

cost-optimal combination of infrastructure?

3. How do we deal with the variablility of wind and solar: balancing in space with networks

or in time with storage?
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Variability: Single wind site in Berlin

Looking at the wind output of a single wind plant over two weeks, it is highly variable,

frequently dropping close to zero and fluctuating strongly.
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Electricity consumption is much more regular

Electrical demand is much more regular over time - dealing with the mismatch between

locally-produced wind and the demand would require a lot of storage...
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Variability: Different wind conditions over Germany

But the wind does not blow the same at every site at every time: at a given time there are a

variety of wind conditions across Germany. These differences balance out over time and space.
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Variability: Single country: Germany

For a whole country like Germany this results in valleys and peaks that are somewhat

smoother, but the profile still frequently drops close to zero.
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Variability: Different wind conditions over Europe

The scale of the weather systems are bigger than countries, so to leverage the full smoothing

effects, you need to integrate wind at the continental scale.
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Variability: A continent: Europe

If we can integrate the feed-in of wind turbines across the European continent, the feed-in is

considerably smoother: we’ve eliminated most valleys and peaks.
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Variability: A continent: Wind plus Hydro

Flexible, renewable hydroelectricity from storage dams in Scandinavia and the Alps can fill

many of the valleys; excess energy can either be curtailed (spilled) or stored.
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Costs: No interconnecting transmission allowed
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Dispatch with no interconnecting transmission

For Great Britain with no interconnecting transmission, excess wind is either stored as

hydrogen or curtailed:
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Costs: Cost-optimal expansion of interconnecting transmission
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Dispatch with cost-optimal interconnecting transmission

Almost all excess wind can be now be exported:
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Electricity Only Costs Comparison
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Course outline



Course outline

This course will cover the following topics:

• General properties of renewable power

• Backup generation, curtailment

• Network modelling in power systems

• Storage modelling

• Optimization theory

• Energy system economics

• Dynamics of renewable energy networks (synchronization, etc.)

• Complex network techniques for renewable energy networks (flow tracing, etc.)
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Electricity Consumption



Why is electricity useful?

Electricity is a versatile form of energy carried by electrical charge which can be consumed in a

wide variety of ways (with selected examples):

• Lighting (lightbulbs, halogen lamps, televisions)

• Mechanical work (hoovers, washing machines, electric vehicles)

• Heating (cooking, resistive room heating, heat pumps)

• Cooling (refrigerators, air conditioning)

• Electronics (computation, data storage, control systems)

• Industry (electrochemical processes)

Compare the convenience and versatility of electricity with another energy carrier: the chemical

energy stored in natural gas (methane), which can only be accessed by burning it.
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Power: Examples of consumption

At full power, the following items consume:

Item Power

New efficient lightbulb 10 W

Old-fashioned lightbulb 70 W

Single room air-conditioning 1.5 kW

Kettle 2 kW

Factory ∼1-500 MW

CERN 200 MW

Germany total demand 35-80 GW
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Energy

In the electricity sector, energy is usually measured in ‘Watt-hours’, Wh.

1 kWh = power consumption of 1 kW for one hour

E.g. a 10 W lightbulb left on for two hours will consume

10 W * 2 h = 20 Wh

It is easy to convert this back to the SI unit for energy, Joules:

1 kWh = (1000 W) * (1 h) = (1000 J/s)*(3600 s) = 3.6 MJ
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Yearly energy to power

Germany consumes around 600 TWh per year, written 600 TWh/a.

What is the average power consumption?

600 TWh/a =
(600 TW) ∗ (1 h)

(365 ∗ 24 h)

=
600

8760
TW

= 68.5 GW
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Discrete Consumers Aggregation

The discrete actions of individual consumers smooth out statistically if we aggregate over many

consumers.
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Load curve properties

The Germany load curve (around 500 TWh/a) shows daily, weekly and seasonal patterns;

religious festivals are also visible.
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Load duration curve

For some analysis it is useful to construct a duration curve by stacking the hourly values from

highest to lowest.
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Load density function

Similarly we can also build the probability density function:
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Load spectrum

If we Fourier transform, the seasonal, weekly and daily frequencies are clearly visible.
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Electricity Generation



How is electricity generated?

Conservation of Energy: Energy cannot be created or destroyed: it can only be converted

from one form to another.

There are several ‘primary’ sources of energy which are converted into electrical energy in

modern power systems:

• Chemical energy, accessed by combustion (coal, gas, oil, biomass)

• Nuclear energy, accessed by fission reactions, perhaps one day by fusion too

• Hydroelectric energy, allowing water to flow downhill (gravitational potential energy)

• Wind energy (kinetic energy of air)

• Solar energy (accessed with photovoltaic (PV) panels or concentrating solar thermal power

(CSP))

• Geothermal energy

NB: The definition of ‘primary’ is somewhat arbitrary.
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Power: Examples of generation

At full power, the following items generate:

Item Power

Solar panel on house roof 15 kW

Wind turbine 3 MW

Coal power station 1 GW
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Generators

With the exception of solar photovoltaic panels (and electrochemical energy and a few other

minor exceptions), all generators convert to electrical energy via rotational kinetic energy and

electromagnetic induction in an alternating current generator.
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Example of electricity generation across major EU countries in 2013

NO ES GB DE FR
0

100

200

300

400

500

600

700

800

900

E
le

ct
ri

ci
ty

 G
e
n
e
ra

ti
o
n
 i
n
 2

0
1
3
 [

T
W

h
/a

]

Solar

Wind

Biomass

Hydro

Oil

Gas

Hard Coal

Lignite

Nuclear

39



Electricity generation in Germany per year

In 15 years Germany has gone from a system dominated by nuclear and fossil fuels, to one with

33% renewables in electricity consumption.
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Efficiency

When fuel is consumed, much/most of the energy of the fuel is lost as waste heat rather than

being converted to electricity.

The thermal energy, or calorific value, of the fuel is given in terms of MWhth, to distinguish it

from the electrical energy MWhel.

The ratio of input thermal energy to output electrical energy is the efficiency.

Fuel Calorific energy Per unit efficiency Electrical energy

MWhth/tonne MWhel/MWhth MWhel/tonne

Lignite 2.5 0.4 1.0

Hard Coal 6.7 0.45 2.7

Gas 15.4 0.4 6.16

Uranium 150000 0.33 50000
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Fuel costs to marginal costs

The cost of a fuel is often given in e/kg or e/MWhth.

Using the efficiency, we can convert this to e/MWhel.

Fuel Per unit efficiency Cost per thermal Cost per elec.

MWhel/MWhth e/MWhth e/MWhel

Lignite 0.4 4.5 11

Hard Coal 0.45 10 22

Gas 0.4 23 58

Uranium 0.33 3.3 10
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CO2 emissions per MWh

The CO2 emissions of the fuel.

Fuel tCO2/t tC02/MWhth tCO2/MWhel

Lignite 0.9 0.36 0.9

Hard Coal 2.4 0.36 0.8

Gas 3.1 0.2 0.5

Uranium 0 0 0

Current CO2 price in EU Emissions Trading Scheme (ETS) e5.27/tCO2
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CO2 emissions from electricity sector

Despite the increase in renewables in the electricity sector, CO2 emission have not been

reduced substantially in Germany. This is partly because German exports have also increased.

44

Source: Agora Energiewende



Other sectors

The CO2 emissions from electricity generation contribute only a fraction to total global

greenhouse gas emissions. However electricity generation is one of the easiest places to reduce

emissions, aside from directly reducing energy consumption.
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Wind time series

Unlike the load, the wind is much more variable, regularly dropping close to zero and rarely

reaching full output (when aggregated over all of Germany).
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Wind time series: weekly

If we take a weekly average we see higher wind in the winter and some periodic patterns over

2-3 weeks (synoptic scale).
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Wind duration curve
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Wind density function
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Wind spectrum

If we Fourier transform, the seasonal, synoptic and daily patterns become visible.
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Solar time series

Solar is variable, but more predictable than wind.
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Solar time series: weekly

If we take a weekly average we see higher solar in the summer.
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Solar duration curve
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Solar density function
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Solar spectrum

If we Fourier transform, the seasonal and daily patterns become visible.
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Balancing a single country



Power mismatch

Suppose we now try and cover the electrical demand with the generation from wind and solar.

How much wind do we need? We have three time series:

• {`t}, `t ∈ R the load (varying between 35 GW and 80 GW)

• {wt},wt ∈ [0, 1] the wind availability (how much a 1 MW wind turbine produces)

• {st}, st ∈ [0, 1] the solar availability (how much a 1 MW solar turbine produces)

We try W MW of wind and S MW of solar. Now the effective residual load or mismatch is

mt = `t −Wwt − Sst

We choose W and S such that on average we cover all the load

〈mt〉 = 0

and so that the 70% of the energy comes from wind and 30% from solar (W = 147 GW and

S = 135 GW).
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Mismatch time series

Mismatch is variable, but more predictable than wind.
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Mismatch duration curve
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Mismatch density function
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Mismatch spectrum

If we Fourier transform, the seasonal and daily patterns become visible.
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How to deal with the mismatch?

The problem is that

〈mt〉 = 0

is not good enough! We need to meet the demand in every single hour.

This means:

• If mt > 0, i.e. we have unmet demand, then we need backup generation from dispatchable

sources e.g. hydroelectricity reservoirs, fossil/biomass fuels.

• If mt < 0, i.e. we have over-supply, then we have to shed / spill / curtail the renewable

energy.
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Mismatch
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Mismatch
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Mismatch
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Mismatch duration curve
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What to do?

Backup energy costs money and may also cause CO2 emissions.

Curtailing renewable energy is also a waste.

We’ll look in the next lectures at 4 solutions:

1. Smoothing stochastic variations of renewable feed-in over larger areas, e.g. the whole of

European.

2. Using storage to shift energy from times of surplus to deficit.

3. Shifting demand to different times, when renewables are abundant.

4. Consuming the electricity in other sectors, e.g. transport or heating.
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